1	Not all information is equal: Effects of disclosing different types of
2	likelihood information on trust, compliance and reliance, and task
3	performance in human-automation teaming
4	Na Du
5	Industrial and Operations Engineering, University of Michigan, Ann Arbor
6	Kevin Y. Huang
7	Industrial and Operations Engineering, University of Michigan, Ann Arbor
8	X. Jessie Yang
9	Industrial and Operations Engineering, University of Michigan, Ann Arbor
10	Human Factors, Accepted for Publication on June 14, 2019
11	Manuscript type: Research Article
12	Running head: Disclosing likelihood information
13	Corresponding author: X. Jessie Yang, 1205 Beal Avenue, Ann Arbor, MI48109,
14	Email: xijyang@umich.edu
15	Acknowledgment: We would like to thank Kevin Li and Benjamin Pinzone for
16	programming the simulator.
17	Précis: We examined the effects of disclosing likelihood information on trust,
18	compliance and reliance, and task performance. Results indicate that operators
19	informed of the predictive values or the overall likelihood value, rather than the hit and
20	correct rejection rates, relied on the decision aid more appropriately and obtained
21	higher task scores.

22 **Topic:** Human-Computer Interaction, Computer Systems

Abstract

Objective: The study examines the effects of disclosing different types of
 likelihood information on human operators' trust in automation, their compliance and
 reliance behaviors, and the human-automation team performance.

1

Background: To facilitate appropriate trust in and dependence on automation,
explicitly conveying the likelihood of automation success has been proposed as one
solution. Empirical studies have been conducted to investigate the potential benefits of
disclosing likelihood information in the form of automation reliability, (un)certainty,
and confidence. Yet, results from these studies are rather mixed.

Method: We conducted a human-in-the-loop experiment with 60 participants using a simulated surveillance task. Each participant performed a compensatory tracking task and a threat detection task with the help of an imperfect automated threat detector. Three types of likelihood information were presented: overall likelihood information, predictive values, and hit and correct rejection rates. Participants' trust in automation, compliance and reliance behaviors, and task performance were measured.

Results: Human operators informed of the predictive values or the overall
 likelihood value, rather than the hit and correct rejection rates, relied on the decision
 aid more appropriately and obtained higher task scores.

Conclusion: Not all likelihood information is equal in aiding human-automation
 team performance. Directly presenting the hit and correct rejection rates of an
 automated decision aid should be avoided.

Application: The findings can be applied to the design of automated decision
 aids.

Keywords: Human-robot interaction, trust in automation, likelihood alerts,
 Bayesian inference, base rate fallacy

1. INTRODUCTION

1

Automated decision aids have been used in a wide array of domains, including 2 military operations, medical diagnosis, transportation safety administration (TSA) 3 among others. As automation becomes more capable in perception, planning, learning 4 and action execution, it is expected to significantly enhance the human-automation 5 team performance. However, issues arise when human agents place unjustified trust in 6 and dependence on automation or when they do not display enough trust and 7 dependence (Dixon, Wickens, & McCarley, 2007; Du et al., 2019; Lee & See, 2004; 8 Parasuraman & Riley, 1997; Petersen, Robert, Yang, & Tilbury, 2019; Yang, Unhelkar, 9 Li, & Shah, 2017). 10

To facilitate appropriate trust in and dependence on automation, explicitly 11 conveying the likelihood of automation success has been proposed as one solution. 12 Empirical studies have investigated the potential benefits of disclosing likelihood 13 information in the form of automation reliability, (un)certainty, and confidence. Among 14 existing studies, few were based upon specific computational algorithms, for instance, 15 the neural network used in a study by McGuirl and Sarter (2006). Not surprisingly, to 16 model the performance of the automation, the majority of existing studies employed the 17 signal detection theory (SDT) (Macmillan & Creelman, 2005; Tanner & Swets, 1954), 18 based on which the likelihood information is calculated. Yet, results from these studies 19 seem to be inconsistent. Some studies revealed that the likelihood information 20 significantly helped human operators calibrate their trust, adjust their reliance and 21 compliance behaviors, and enhance human-automation team performance (McGuirl & 22 Sarter, 2006; Walliser, de Visser, & Shaw, 2016; Wang, Jamieson, & Hollands, 2009). 23 Other studies, however, reported that human operators did not trust or depend on 24 automated decision aids appropriately even when the likelihood information was 25 disclosed (Bagheri & Jamieson, 2004; Fletcher, Bartlett, Cockshell, & McCarley, 2017). 26 A close examination of existing literature suggests that studies employ different 27 methods to calculate the likelihood information, which potentially contribute to the 28 mixed results. 29

3

SDT models the relationship between signals and noise, as well as the automation's ability to detect signals among noise. The state of the world is characterized by either "signal present" or "signal absent", which may or may not be identified correctly by the automation. The combination of the state of the world and the automation's detection results in four possible states: hit, miss, false alarm (FA) and correct rejection (CR).



Figure 1. Signal Detection Theory (SDT) and Calculations of Hit Rate, CR Rate, Positive Predictive Value, Negative Predictive Value and Overall Success Likelihood

Based on the framework of SDT, the calculation of automation likelihood 7 information can be broadly classified into three categories. The first category of 8 likelihood information is the automation's overall likelihood of success regardless of hits 9 or CRs, calculated as $Pr(Success \mid Response) = \frac{Hits + CRs}{Hits + Misses + FAs + CRs}$. For example, 10 Dzindolet, Pierce, Beck, and Dawe (2002) examined how revealing the number of errors 11 an automated decision aid made affected the perceived performance of and reliance on 12 the automated aid. In their study, participants viewed 200 slides of displaying pictures 13 of a military terrain and indicated whether or not a solider in camouflage was in the 14 slide with the help from either an automated decision aid or a human decision aid. After 15

200 trials, half of the participants were provided with the reliability of the decision aid 1 (total number of errors) and the other half not. The participants then rated the decision 2 aid's performance and indicated whether to rely on the aid for the target detection task 3 in 10 trials randomly chosen from the past 200 trials. Results showed that both types of 4 decision aids were rated more favorably when its reliability was disclosed. More 5 recently, Walliser et al. (2016) conducted a study where participants interacted with 6 four unmanned aerial vehicles (UAVs) that utilized automated target recognition (ATR) 7 systems to identify targets as enemy or friendly. Results showed that when participants 8 were informed of the overall success likelihood information ("corrected identification 9 rate" in the article), participants tended to apply a more appropriate strategy when 10 interacting with the automation, resulting in better task performance. 11

The second type of likelihood information is the predictive value, calculated as 12 $\frac{Hits}{Hits + FAs}$ or $\frac{CRs}{Misses + CRs}$. The positive predictive value means the probability of 13 having a true signal given an automation alert, $Pr(Signal \mid Alert)$, and the negative 14 predictive value the probability of not having a signal when the automation is silent, 15 $Pr(No \ signal \mid No \ alert)$. Along this line of research, Wang et al. (2009) examined the 16 effects of presenting the positive predictive value on human operators' belief, trust and 17 dependence using a combat identification (CID) task. In the study, participants 18 distinguished friend from foe with the aid from an imperfect CID. More specifically, due 19 to its working mechanism, once the CID identified a soldier as friendly, it was always 20 correct. However, when the CID identified a soldier as "unknown", the solider could be 21 "friendly", "hostile" or "neutral". Half of the participants were informed of the positive 22 predictive value and the other half not. Results of their study revealed that disclosing 23 the positive predictive value to users positively influenced trust and reliance. In a follow 24 up study, Neyedli, Hollands, and Jamieson (2011) developed four visual displays for 25 presenting predictive values in the CID task. Display type (pie, random mesh) and 26 display proximity (integrated, separated) of likelihood information were manipulated in 27 the experiment. The results revealed that participants relied on the automation more 28 appropriately and had greater sensitivity with the integrated display and random mesh 29

display. Studies on likelihood alarms also shed light on the effects of disclosing the 1 predictive values. Likelihood alarms, in contrary to traditional binary alarms, integrate 2 both state information and likelihood information by dividing a state into two or more 3 graded levels. For instance, "warning" and "caution" could both indicate the presence of 4 a target, with "warning" indicating a higher probability. Although not explicitly stated, 5 these studies manipulated the positive and negative predictive values to represent the 6 varying likelihood of true positives and true negatives given the automation responses, 7 showing that in general human operators demonstrated higher trust in and dependence 8 on alerts with higher likelihood (Sorkin, Kantowitz, & Kantowitz, 1988; Wiczorek & 9 Manzey, 2014; Yang et al., 2017). Despite the above-mentioned positive evidence, 10 Fletcher et al. (2017) asked participants to view a series of simulated sonar returns and 11 decide whether a target was present or not. However, the display of rings indicating the 12 likelihood that a target was present, given a return signal, did not seem to improve the 13 overall ability of participants to distinguish targets from noise. 14

The third type of likelihood information is the hit rate and correct rejection rate, 15 calculated as $\frac{Hits}{Hits + Misses}$ and $\frac{CRs}{FAs + CRs}$. Hit rate is the probability of automation 16 issuing an alarm or an alert given a true signal, $Pr(Alert \mid Signal)$, and CR rate is the 17 probability of automation silence when there is no signal, $Pr(No \ alert \mid No \ signal)$. It 18 is important to distinguish the predictive values from the hit/CR rates. In fact, the 19 positive/negative predictive values and the hit/CR rates are *inverse* conditional 20 probabilities of each other. The two predictive values can be derived from the hit/CR 21 rates using the Bayes Theorem (Please see the Present Study section for details). 22 Utilizing the Multi-Attribute Task Battery (MAT: Comstock and Arnegard 1992), 23 Bagheri and Jamieson (2004) examined the effect of providing operators with 24 information about the context-related nature of automation reliability. Participants 25 performed three tasks simultaneously: tracking, fuel management, and system 26 monitoring. The monitoring task was automated and a gauge showing abnormal 27 numbers would automatically reset its value. However, sometimes the automation 28 would fail (miss) to correct the value and the human operator should intervene. 29

Automation reliability, essentially hit rate, ("Slightly under 100%" for high hit rate or
"Slightly above 50%" for low hit rate) was disclosed to the participants. Comparing to a
previous study where participants were unaware of the likelihood information, there
seemed to be no evidence on any beneficial effects of disclosing hit rate on trust in
automation or task performance.

6

2. THE PRESENT STUDY

The above-mentioned studies on likelihood information suggest that disclosing the overall likelihood information could increase preference and task performance. In addition, in general there is positive evidence supporting that presenting predictive values could help human operators calibrate their trust and adjust their dependence behaviors, leading to better performance. In contrast, revealing hit/CR rates does not seem to be beneficial. Despite the inconsistent results, there is little, if not no, research directly comparing the effects of revealing different types of likelihood information.

In the present study, we aimed to investigate if and how different methods of 14 calculating likelihood information affect operators' trust in and dependence on 15 automation, and task performance. We argue that the beneficial effects of disclosing the 16 likelihood information are influenced by, at least, two factors. The first factor is 17 information granularity – the extent to which the likelihood information represents 18 probabilistic information specific to certain conditions. The overall success likelihood, 19 $Pr(Success \mid Automation \ response)$, is less fine-grained compared to the predictive 20 values and the hit/CR rates, as it represents an aggregated probability regardless what 21 the automation response is (alert or no alert). The second factor is information 22 directness – the extent to which the likelihood information can be directly used to guide 23 people's behaviors without the need to estimate or integrate other information. The 24 predictive values are the most direct in guiding people's compliance and reliance 25 behaviors. The positive predictive value, $Pr(Signal \mid Alert) = x\%$, indicate that when 26 the automation's alert or alarm goes off, there is x% chance that there is a true signal. 27 Probabilistically speaking, if the automation's alarm goes off 100 times, there would be 28

1	x true alarms and $100 - x$ false alarms. And an optimal decision maker should only
2	check the x number of true alarms and save his or her time and resources when false
3	alarms happen. The same logic applies to the negative predictive value. On the other
4	hand, the hit/CR rates, $Pr(Alert \mid Signal)$ and $Pr(No \ alert \mid No \ signal)$, are less
5	usable, because the human operator cannot directly use the probabilities to guide their
6	behaviors. Instead, the hit/CR rates need to be integrated with the base rate in order
7	to generate useful information in guiding behaviors. And this particular integration
8	process, known as Bayesian inference, is very difficult (Kahneman, 2011). To better
9	illustrate the idea of Bayesian inference, consider the following scenario:
10	An airport security officer detects threats with the help of an nearly perfect
11	decision aid. The alarm of the decision aid goes off if it recognizes a threat.
12	The security officer could also manually check any luggage. The decision aid
13	is correct 95 percent of the time. In other words, if there is a threat, the
14	decision aid recognizes it with a 95 percent probability (Hit rate $=$
15	$Pr(Alarm \mid Threat) = 95\%$), and if there is no threat, the aid shows no
16	threat with a 95 percent probability (CR rate =
17	$Pr(No \ alarm \mid No \ threat) = 95\%$). Suppose threats are rare in the airport,
18	on average occurring only 1 percent of the time. If an alarm went off, should
19	the officer panic and what would be the chance that there was actually a
20	threat?

In the example, the hit rate is 95%. However, it does not mean that when an alarm goes off, there is 95% chance that there would be a threat. To answer the question correctly, we need to apply the Bayes' rule to calculate the positive predictive value, mathematically the *inverse* of the hit rate:

25 $Pr(Threat \mid Alarm) = \frac{Pr(Alarm|Threat)Pr(Threat)}{Pr(Alarm)} =$ 26 $\frac{Pr(Alarm|Threat)Pr(Threat)Pr(Threat)}{Pr(Alarm|Threat)Pr(Threat)+Pr(Alarm|No threat)Pr(No threat)} = \frac{95\% \times 1\%}{95\% \times 1\% + 5\% \times 99\%} = 16\%$

The probability of a true threat is only 16%! If we do not consider the payoff structure associated with the task (i.e. high cost if missing a threat), the result indicates that probabilistically the officer only needs to manually check 16 luggage out
of 100 alarms, and could invest his or her time on other tasks 84% of the time when
alarms go off.

Prior research shows that it is cognitively demanding to use the Bayes' rule 4 (Bar-Hillel, 1980; Cosmides & Tooby, 1996; Goodie & Fantino, 1996; Kahneman, 2011), 5 because of several reasons. First, the base rate may not be readily available and an 6 operator needs to estimate it. Second, when making a probabilistic judgment, an 7 operator may neglect the base rate of Pr(Threat), that threats only occur 1% of the 8 time (Kahneman, 2011). Third, a person might be confused about $Pr(Alarm \mid Threat)$ 9 and its *inverse*, $Pr(Threat \mid Alarm)$, as both are related to the probability of an 10 accurate threat identification (Bar-Hillel, 1980). Due to the difficulty in performing 11 Bayesian inference, we speculate that the hit/CR rates are the least direct. 12

The overall success likelihood, $\Pr(Success \mid Automation \ response)$, represents the 13 probability of a true state (Hit or CR) given an automation response (Alert or No 14 alert), and a higher probability means an operator should follow the automation more 15 overall. The overall success likelihood alone only guides human operators' behaviors at 16 an aggregated level - if the automation overall success likelihood is 80%, when the 17 automation issues 100 suggestions (regardless what the suggestion is), 80 suggestions 18 are correct. Despite the lack of granularity, we speculate that the overall likelihood 19 information is more direct than the hit/CR rate, as it can be easily used to guide 20 overall human behaviors. 21

Due to the influence of the two factors, we predicted that there would be significant differences in participants' trust, dependence and dual-task performance when presented with different types of likelihood information. In particular, disclosing hit/CR rate would be the least beneficial in fostering proper trust and dependence, and would lead to the worst task performance. Revealing the predictive values, in contrast, would be the most beneficial. 1

3. METHOD

This research complied with the American Psychological Association code of ethics
 and was approved by the Institutional Review Board at the University of Michigan.

4 3.1 Participants

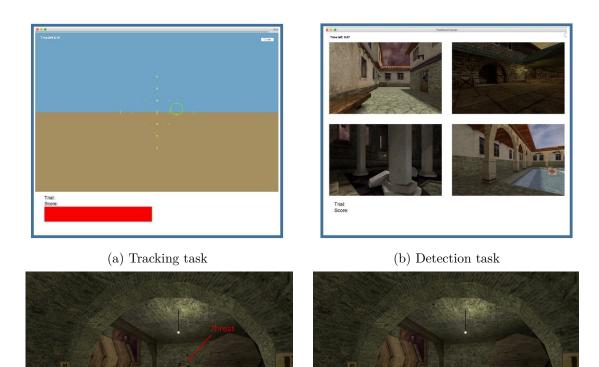
A total of 25 male and 36 female university students (average age = 22.28 years, SD = 4.88) with normal or corrected-to-normal vision participated in the experiment. Participants were compensated with \$10 upon completion of the experiment. In addition, there was a chance to obtain an additional bonus of 1 to 5 dollars based on their performance.

¹⁰ 3.2 Apparatus and stimuli

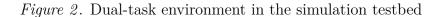
We used a simulated surveillance task in the experiment. In the experimental task, participants were asked to control the level of flight of a simulated swarm of drones, essentially a compensatory tracking task, and simultaneously detect potential threats in photo feeds from the drones (Figure 2). Participants were only able to access the display for either the tracking task or the detection task at any time and needed to toggle between the two displays. The simulated surveillance task was programmed using Java and the experiment was run on a 24 inch monitor.

Tracking task. Each trial started on the tracking display and lasted 10 seconds.
 The tracking task was programmed based on the PEBL (The Psychology Experiment
 Building Language) compensatory tracker task

(http://pebl.sourceforge.net/battery.html). Participants used a joystick to move a
randomly-drifting green circle to a crosshair located at the center of the screen – i.e.
minimize the distance between the green circle and the crosshair as shown in Figure 2
(a). When a trial started, the green circle started at the centre of the crosshair. The
position of the circle is a function of its previous position, its velocity, and the actions of
three forces. The first force is the user input. The second force is a buffeting force
composed of six sine waves at different amplitudes, frequencies and phase angles. The



(c) Threat



third force simulates the force of gravity that causes the circle to slip on an unseen 1 slippery surface. As a result of the buffeting force and the gravitational force, the circle 2 drifts randomly. The performance of the tracking task is measured by two metrics: the 3 Root Mean Square of the tracking errors (RMSE) and the tracking score ranging 0-10. 4 The tracking error - the distance in pixels between the location of the circle and the 5 crosshair, was measured at a frequency of 20Hz. The RMSE was calculated as 6 $\sqrt{\frac{1}{n}\sum_{i=1}^{n}(Tracking \ Error)^2}$, where n = 200. The tracking score was calculated using a 7 10-bin histogram of the RMSE distribution based on a dataset collected in a prior study 8 (Yang et al., 2017). 9

Detection task. Besides the tracking task, every trial participants received a
 new set of four images from the simulated drones and were responsible for threat
 detection. The four images were static during every trial as shown in Figure 2(b). The

threat was a person as shown in Figure 2(c) and only one threat would present in one of 1 the four images. There was no distractor in the four images and the participants did 2 not determine if the person was a friend or a foe. The distribution of the threats across 3 the four images followed a uniform distribution. Participants performed the detection 4 task with the help of an imperfect automated threat detector. If the detector recognized 5 a threat, the alert "Danger" went off immediately when a trial started in both visual 6 and auditory modalities. The visual red alert was only shown on the tracking display 7 (Figure 2(a)) and the auditory notification was a synthetic sound of "Danger". 8 Participants were expected to identify the presence of the threat by pressing the 9 "Report" button on the joystick as accurately and quickly as possible. The participant 10 could follow the decisions of the threat detector blindly, or check the images in person 11 and make his or her own decisions. If the detector identified no threat, the alert was 12 silent. Participants did not report the absence of threat, i.e., participants were expected 13 to perform no action when there was no threat. The performance of the detection task 14 is measured by detection time, detection accuracy and detection score (Please refer to 15 the Scoring System section). 16

Toggle between two displays. Every trial started on the tracking display.
Participants were only able to access one display at a time, and needed to toggle
between the displays of the tracking and the detection tasks using a "Switch" button on
the joystick. There was a 0.5-second time delay every time they toggled between the
displays, simulating the time for computer processing and loading the displays. The
time stamp and the number of occurrences of participants pressing the "Switch" button
were tracked automatically by the program.

Scoring system. In the experimental task, participants performed the tracking task and the detection task simultaneously, and needed to make a trade-off decision on which task to perform at any time, i.e. if they decide to check the four images, they would probably earn more points in the detection task but fewer points in the tracking task, and vice versa. Therefore, a pay-off structure has to be determined to eliminate potential bias toward either the tracking or the detection task by ensuring that the

potential gain in one task is approximately equal to the opportunity cost in the other
task. A pilot study was conducted to determine the payoff structure (Please refer to
Appendix A for more details). As a result, every trial participants could obtain 0-10
points for the tracking task and 0-5 points for the detection task.

$$5 Detection \ score = \begin{cases} 0 & Detection \ is \ wrong \\ 5 - 5 \times \frac{Detection \ Time}{10000 \ milliseconds} & Detection \ is \ correct : \ Hit \\ 5 & Detection \ is \ correct : \ CR \end{cases}$$

6 3.3 Experimental Design

The experiment adopted a 2 (automation reliability: low vs high) ×3 (likelihood
information: overall success likelihood, predictive values, and hit/CR rates) mixed
design with automation reliability as the within-subjects factor and likelihood
information as the between-subjects factor.

The reliability of the automated threat detector was configured based on SDT. In the present study, the criterion c was set at -0.25 and sensitivity d' at 1.5 or 3, resulting in automation with low and high reliability (Table 1). Benching marking prior literature (McBride, Rogers, & Fisk, 2011; Wiczorek & Manzey, 2014; Yang et al., 2017), we set the base event rate at 30%. Based on the preset c, d' and base rate, the number of occurrences of hits, misses, FAs and CRs were calculated and rounded to integers.

Reliability d'Alert Threat No threat cDanger 1311 Low -0.251.5 $\mathbf{2}$ 24Clear No threat Alert Threat Danger 144 -0.253 High Clear 1 31

TABLE 1: Corresponding hits, misses, false alarms and correct rejections

¹⁷ Different likelihood information was calculated as follows.

1	Overall success likelihood = $\frac{Hits + CRs}{Hits + Misses + FAs + CRs} = 74\%$ or 90%
2	Positive predictive value = $\frac{Hits}{Hits + FAs} = 54\%$ or 78%
3	Negative predictive value = $\frac{CRs}{Misses + CRs} = 92\%$ or 97%
4	Hit rate = $\frac{Hits}{Hits + Misses}$ = 87% or 93%
5	Correct rejection rate = $\frac{CRs}{FAs + CRs} = 69\%$ or 89%

6 3.4 Measures

Trust. We measured participants' subjective rating of trust using a visual analog 7 scale (Wiczorek & Manzey, 2014). The leftmost anchor of the trust scale indicated, 8 "I don't trust the detector at all" and the rightmost anchor "I absolutely trust the 9 detector". The visual analog scale was then converted to a 0-100 scale. As part of the 10 testbed design, in addition to trust ratings, participants needed to report their 11 self-confidence in performing the task without the decision aid and perceived reliability 12 of the decision aid. As the two measures were less relevant to this study, we did not 13 report the data analysis results. 14

Compliance and Reliance. We also assessed participants' compliance and reliance behaviors. Compliance and reliance were operationally defined as the possibility of a participant blindly following the recommendation given by the automated threat detector without crosschecking the detection display. In particular, compliance was calculated as the possibility that a participant blindly reports a threat upon receiving a "Danger" alert without crosschecking the detection display, and reliance the possibility that the participant neither reports nor crosschecks when the detector is silent.

22 Compliance = Pr(Report AND not crosschecking | Alert)

23

Reliance = Pr(Not reporting AND not crosschecking | No alert)

Performance. The performance of the detection task was measured by the
detection accuracy and detection time, as well as the detection score. The performance
of the tracking task was calculated using the RMSE and the tracking score. The
combined performance of both task was calculated as the sum of the detection score
and the tracking score.

¹ 3.5 Experimental procedure

Upon arrival, participants provided informed consent and filled out a 2 demographics form. Afterward, participants received practice on the tasks. The 3 practice session consisted of a 30-trial block with the tracking task only and an 8-trial 4 block of combined tasks, where participants experienced 2 hits, 2 misses, 2 false alarms 5 and 2 correct rejections. Participants were informed that the automated threat detector 6 used in the practice was just for illustration purpose. Afterward, they were randomly 7 assigned to one of the three likelihood information conditions. A table similar to Figure 8 1 was then shown to the participants. Based on the condition a participant was 9 assigned to, the definition, the meaning and the calculation of a particular likelihood 10 information were introduced to the participant. In order to ensure that participants 11 understood the likelihood information, the participants were given an example with 12 different number of hits, misses, FAs and CRs, and were asked to calculate the 13 likelihood information themselves. If a participant had difficulty doing so, the verbal 14 definitions were reiterated and shown again to the participant, with potential further 15 clarification on specific terms, until the correct answer was reached by the participant. 16 The experiment consisted of two 50-trial blocks with different automation 17

reliability. The order of automation reliability was counterbalanced. Participants were 18 verbally informed of the values of the likelihood information prior to the experiment. A 19 text message showing the probability was also present throughout the experiment. Prior 20 to the onset of each trial, there was a splash screen with a 3-second countdown timer. 21 After every trial, participants were informed of the detection accuracy, the tracking 22 score and the detection score they obtained in this trial and the accumulative scores 23 they had obtained so far. After every 5 trials, participants indicated their trust. 24 Participants were told that their subjective ratings should be based on all the trials 25 they have completed so far, instead of just the previous 5 trials. 26

4. RESULTS

Data from one participant were excluded from analysis as his tracking task
performance was below three standard deviations from the mean. All hypotheses were
tested using data from the remaining 60 participants. We used mixed design analysis of
covariance (ANCOVA) to analyze the relationship between independent variables and
dependent variables. Participants' tracking task performance (last ten trials) in the
practice session, was used as the covariate for analysis. The α level was set at .05 for all
statistical tests. All post hoc comparisons utilized a Bonferroni α correction.

TABLE 2: Mean and Standard Error of dependent variables in each condition

	Low Reliability, $c = -0.25$, $d' = 1.5$		High Reliability, $c = -0.25$, $d' = 3$			
	Overall suc-	Predictive val-	$\rm Hit/CR$ rates	Overall suc-	Predictive	$\rm Hit/CR$ rates
	cess likelihood	ues		cess likelihood	values	
Trust	53.15 ± 4.98	53.21 ± 3.70	58.82 ± 4.22	76.53 ± 2.79	71.60 ± 2.57	69.55 ± 4.92
Compliance $(\%)$	31.67 ± 7.27	17.92 ± 6.24	33.13 ± 7.58	58.33 ± 9.30	47.78 ± 7.51	54.72 ± 9.03
Reliance $(\%)$	46.54 ± 6.67	83.85 ± 5.36	37.69 ± 9.07	79.69 ± 5.92	90.78 ± 5.01	59.84 ± 8.68
Detection time	$2518.90 \pm$	$2623.29 \pm$	$2275.49 \pm$	$1655.10 \pm$	2002.61 ±	$1736.20 \pm$
(ms)	228.54	272.74	217.99	242.21	173.16	236.60
Detection accu-	84.10 ± 2.17	86.00 ± 1.68	85.10 ± 2.11	89.80 ± 0.93	91.30 ± 0.87	90.40 ± 0.72
racy (%)						
Detection score	3.91 ± 0.10	4.03 ± 0.06	3.96 ± 0.08	4.27 ± 0.04	4.33 ± 0.04	4.30 ± 0.03
Tracking error	60.30 ± 3.28	58.37 ± 4.23	67.89 ± 3.70	47.10 ± 3.31	46.78 ± 4.04	55.20 ± 3.53
Tracking score	6.66 ± 0.27	6.95 ± 0.34	5.97 ± 0.32	7.87 ± 0.28	7.91 ± 0.32	7.08 ± 0.32
Total score	10.58 ± 0.24	10.97 ± 0.29	9.93 ± 0.27	12.15 ± 0.27	12.22 ± 0.32	11.38 ± 0.32

9 4.1 Subjective trust

1

Trust. Participants had higher trust in the automated threat detector as automation reliability increased (F(1, 56) = 7.533, p = .008). However, the effect of likelihood information was non-significant.

¹³ 4.2 Compliance and Reliance

¹⁴ Figure 3 shows the participants' compliance and reliance behaviors.

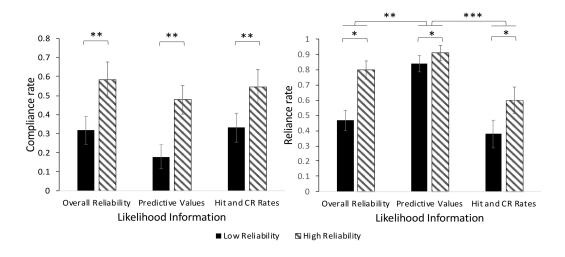


Figure 3. Compliance with and reliance on automated threat detector
*** Difference is significant at the 0.001 level; ** Difference is significant at the 0.01 level;
* Difference is significant at the 0.05 level (2-tailed).

¹ Compliance. Higher automation reliability led to higher compliance rate on the ² automated threat detector (F(1, 56) = 7.196, p = .01). The effect of likelihood ³ information was non-significant.

Reliance. Automation reliability (F(1, 56) = 5.905, p = .018) and likelihood 4 information (F(2, 56) = 10.752, p < .001) significantly affected reliance rate. Higher 5 automation reliability led to higher reliance. Moreover, providing participants with 6 predictive values led to higher reliance on the automated threat detector, compared to 7 the overall success likelihood condition (p = .009) and the hit/CR rates condition (p < .009)8 .001). There was also a significant two-way interaction between automation reliability g and likelihood information (F(2, 56) = 4.807, p = .012). When automation reliability 10 was low, participants relied on the automated threat detector the most when they were 11 informed of the predictive values (predictive values > overall success likelihood: p < p12 .001; predictive values > hit/CR rates: p < .001). As reliability increased, the reliance 13 rate was significantly higher when participants were provided with predictive values 14 relative to the hit/CR rates (p = .004). 15

¹⁶ 4.3 Performance

¹⁷ **Detection performance**. As depicted in Figure 4, participants detected threats ¹⁸ more accurately (F(1, 56) = 9.702, p = .003) and faster (F(1, 56) = 8.659, p = .005)

- and gained higher scores (F(1, 56) = 14.633, p < .001) when automation reliability
- ² increased. However, the effect of likelihood information was not significant.

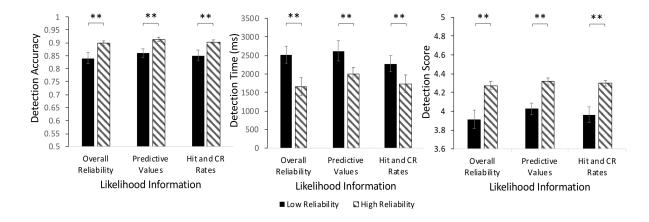


Figure 4. Detection task performance

Tracking performance. As shown in Figure 5, there were significant main effects of automation reliability (F(1, 56) = 4.37, p = .041) and likelihood information (F(2, 56) = 5.381, p = .007) on tracking score. Post hoc analysis indicated that when participants were presented with hit/CR rates, they had the lowest tracking score (hit/CR rates < predictive values: p = .038; hit/CR rates < overall success likelihood: p = .011).

Additionally, there was a significant effect of likelihood information (F(2, 56) =4.311, p = .018) on RMSE. When participants were presented with hit/CR rates, they had the a higher RMSE (hit/CR rates > overall success likelihood: p = .019). The main effect of automation reliability on RMSE was not significant.

Combined performance. The main effects of automation reliability (F(1, 56))13 = 10.744, p = .002 and likelihood information (F(2, 56) = 6.293, p = .003) were 14 significant (Figure 6). Participants obtained higher combined scores as automation 15 reliability increased. There was also a difference among the three types of likelihood 16 information. Post hoc analysis revealed that participants informed of overall success 17 likelihood or predictive values, instead of the hit/CR rates, had higher total scores 18 (overall success likelihood > hit/CR rates: p = .008; predictive values > hit/CR rates: 19 p = .014). 20

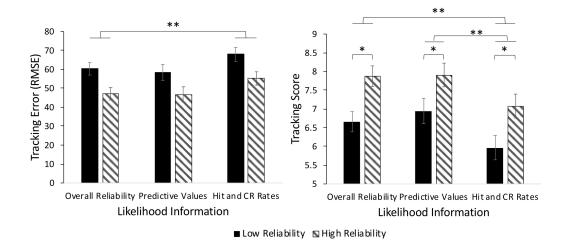


Figure 5. Tracking task performance

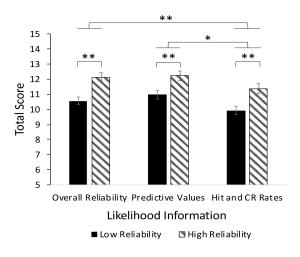


Figure 6. Total task performance

5. DISCUSSION

In the present study, we predicted that there would be significant differences in participants' trust, dependence and dual-task performance when presented with different types of likelihood information. In particular, disclosing hit/CR rate would be the least beneficial in fostering proper trust and compliance and reliance behaviors, and would lead to the worst task performance. Revealing the predictive values, in contrast, would be the most beneficial. We discuss how the results support our prediction.

8 Trust in automation

1

Our results indicate a non-significant difference on trust between the three types
 of likelihood information. The lack of significance might have been due to two reasons.

First, the sensitivity of a uni-dimensional trust scale might not be as high as that of a 1 multi-dimensional scale. A uni-dimensional scale has the advantage of easy 2 implementation. However, it might not be able to capture the different dimensions 3 underlying the concept of trust compared to the multi-dimensional scales. Two widely 4 used multi-dimensional scales (Jian, Bisantz, & Drury, 2000; Muir & Moray, 1996) have 5 12 and 7 questions, respectively. Second, the reliability of the threat detector was 6 consistent across the different types of likelihood information. Therefore, the judgment 7 of trust might be largely based on the true performance of automated detector instead 8 of the likelihood information presentation. Further research is needed to systematically 9 examine potential differences between uni-dimensional and multi-dimensional trust 10 scales. 11

¹² Compliance and Reliance behaviors

We found a significant difference in reliance and a non-significant difference in 13 compliance between the three types of likelihood information. Disclosing the predictive 14 values led to higher and more appropriate reliance, compared to the overall success 15 likelihood condition and the hit/CR rates condition. We argue that the predictive 16 values can be considered as the gold standard of optimal behaviors. The negative 17 predictive value, $\Pr(No \ signal \mid No \ alert) = x\%$, means that when the automation is 18 silent, there is x% chance that a site is clear. Therefore, probablistically speaking, if the 19 threat detector is silent for 100 cases, the human operator only need to check 100 - x20 sites in person. 21

In our study, the negative predictive value was 97% for the high reliability automation, and 92% for the low reliability automation. Therefore, a rational strategy for the human operator is to cross-check only a small number of sites, and to allocate more resource on the tracking task. When presented with negative predictive values, participants' reliance rates were 90.8% and 83.8%, respectively (see Figure 3 and Table 2), which were fairly close to the optional values of 97% and 92%. When informed of the overall likelihood, the observed reliance values were 79.7% and 46.5%, further away from the optimal values; When presented with the hit/CR rates, the observed reliance
values were 59.8% and 37.7%, furthest away from the optimal values. In the present
study, the base rate was set to be 30%. In real life, bases rates of critical events are
usually much lower (Parasuraman & Riley, 1997). With a lower base rate, most of the
time the automated decision aid would be silent, and the benefit of presenting the
predictive values would be further enhanced, as the predictive values promote proper
reliance behaviors.

We failed to find a significance in participant's compliance behaviors. This lack of 8 significance might have resulted from participants' strategies between the detection and g the tracking tasks. The positive predictive values were 78% for the high reliability 10 automation and 54% for the low reliability automation. However, across all the 11 likelihood conditions, the compliance rates were considerably lower than the optimal 12 values (see Figure 3 and Table 2). This suggests that participants cross checked the 13 detection display much more frequently than they should have done. This is further 14 supported by our observation: participants mentioned that the tracking task was fairly 15 boring and they preferred to cross-checking the detection display even if the strategy 16 was not optimal. The unnecessary cross-checking behaviors allowed the participants to 17 detect threats that the automated detector failed to recognize and contributed to a 18 similar performance in the detection task. 19

20 Performance

Our results indicate a significant difference in tracking task and non-significant 21 difference in detection task. The tracking performances in the predictive value condition 22 and the overall likelihood condition were better than that in the hit/CR rate condition. 23 Such results are attributable to participants' reliance and compliance behaviors. When 24 presented with hit/CR rates, participants' reliance behaviors were the least optimal, 25 which means they cross-checked much more frequently than they should have done. 26 Every time a cross-checking was performed, participants could not access the tracking 27 display, hurting the tracking performance. In addition, as mentioned before, the similar 28

¹ compliance behaviors resulted in the similar performance in the detection task.

The observed pattern on tracking and detection performance suggests that the automated threat detector was largely used as a tool for attention management in multitask environments, benefiting the continuous unaided task (i.e. the tracking task), rather than a tool directly benefiting the aided task (i.e. the detection task). The result support the findings of Wiczorek and Manzey (2014).

In addition, we also observed a difference in the combined task performance.
Disclosing predictive values and overall likelihood information led to higher combined
performance than the hit/CR rates condition. We note the importance of obtaining an
explicit pay-off structure with the same unit of measurement. Most of the prior
literature did not report the combined task performance, largely because different tasks
were measured in different units and a combined task performance score was impossible
to obtain.

At last, consistent with findings from previous studies, our results showed that as the automated threat detector became more reliable, participants' trust in and dependence on the threat detector increased, and their dual task performance improved. (Neyedli et al., 2011; Walliser et al., 2016; Wang et al., 2009).

18

6. CONCLUSION

Although disclosing likelihood information has been proposed as a design solution 19 to promote proper trust and dependence, and to enhance human-automation team 20 performance, prior studies showed mixed results (Bagheri & Jamieson, 2004; Dzindolet 21 et al., 2002; Fletcher et al., 2017; Walliser et al., 2016; Wang et al., 2009). The goal of 22 this study was to experimentally examine the effects of presenting different types of 23 likelihood information. Based on the framework of SDT, we categorized likelihood 24 information calculated in prior literature into three types: overall success likelihood, 25 predictive values, and hit/CR rates. 26

The present study offered a framework to summarize existing literature pertaining to disclosing likelihood information. Our results showed that not all likelihood

information is equally useful. Simply presenting the hit/CR rates should be avoided. 1 Our findings can be applied to a wide array of domains such as urban search and rescue 2 (USAR), medical diagnosis and TSA, where the hit/CR rates are often readily available 3 but not the predictive values and overall likelihood information. Hit/CR rates, also 4 known as sensitivity and specificity (Altman & Bland, 1994), are referred to as the 5 diagnostic information (Please note that the sensitivity as hit rate is different from the 6 sensitivity d' in SDT). Often, the diagnostic information is more accessible to people. 7 For instance, physicians are often provided with the diagnostic information when a new 8 test is introduced: The HIV test is 99% accurate – if a patient is infected by HIV, there 9 is 99% chance the test will show a positive result; if a patient is healthy, there is 99%10 chance the test will show a negative result. 11

Efforts should be made to clarify the meanings of different types of likelihood 12 information when an automated decision aid is introduced. Prior research indicates that 13 people could be confused about predictive values and hit/CR rates (Bar-Hillel, 1980). 14 In real life, bases rates of critical events are usually very low (Parasuraman & Riley, 15 1997). With a lower base rate, for instance, 1% in the airport security officer example, 16 the discrepancies between the predictive values and the hit/CR rates would be even 17 larger. Mis-attributing hit/CR rates as predictive values would lead to more 18 detrimental outcomes. 19

The findings should be viewed in light of the following limitations. First, 20 consistent with prior research, we did not provide participants with the base rate and 21 they had to estimate it by themselves. Future study can present base rate to 22 participants and examine whether people can utilize hit/CR rates more appropriately. 23 Base rate can also be manipulated in further research to examine the effects of 24 likelihood information when base rate is extremely low. Second, we used probabilities 25 instead of natural frequencies to present likelihood information. Previous studies have 26 shown that reasoning with natural frequencies results in more accurate inference 27 (Gigerenzer & Hoffrage, 1995; Hoffrage, Hafenbrädl, & Bouquet, 2015; Mandel, 2014). 28 A future study could compare the differences of presenting probabilities and natural 29

- $_{1}$ frequencies. Third, the criterion c in this study was set to be liberal, which led to more
- ² false alarms than misses. Future studies should examine the effects of likelihood
- ³ information with different d' and c.

25

Keypoints

1

• We proposed a framework to summarize existing literature pertaining to 2 disclosing likelihood information and classified the calculation of likelihood 3 information into three categories: overall likelihood value, predictive values, and 4 hit and correct rejection (CR) rates. 5 • Human operators informed of the overall likelihood value or the predictive values, 6 rather than the hit and correct rejection (CR) rates, relied on the decision aid 7 more appropriately. 8 • Human operators informed of the overall likelihood value or the predictive values, 9 rather than the hit and correct rejection (CR) rates, performed better on the 10 tracking task and obtained higher combined task scores. 11 • As automation reliability increased, trust, compliance, reliance and performance 12 increased accordingly. 13

References

2	Altman, D. G., & Bland, J. M. (1994). Diagnostic tests. 1: Sensitivity and specificity.
3	$BMJ, \ 308(6943), \ 1552.$
4	Bagheri, N., & Jamieson, G. A. (2004). The impact of context-related reliability on
5	automation failure detection and scanning behaviour. In $Proceedings of the 2004$
6	IEEE International Conference on Systems, Man and Cybernetics (pp. 212–217).
7	Bar-Hillel, M. (1980). The base-rate fallacy in probability judgments. $Acta$
8	Psychologica, 44(3), 211–233.
9	Comstock, J. R., & Arnegard, R. J. (1992). The Multi-attribute Task Battery for
10	Human Operator Workload and Strategic Behaviour Research (Tech. Rep. No.
11	104174). National Aeronautics and Space Administration.
12	Cosmides, L., & Tooby, J. (1996). Are humans good intuitive statisticians after all?
13	Rethinking some conclusions from the literature on judgment under uncertainty.
14	$Cognition, \; 58(1), \; 1-73.$
15	Dixon, S. R., Wickens, C. D., & McCarley, J. S. (2007). On the independence of
16	compliance and reliance: Are automation false alarms worse than misses? Human
17	Factors, $49(4)$, 564–572.
18	Du, N., Haspiel, J., Zhang, Q., Tilbury, D., Pradhan, A. K., Yang, X. J., & Robert,
19	L. P. (2019). Look who's talking now: Implications of AV's explanations on
20	driver's trust, AV preference, anxiety and mental workload. Transportation
21	Research Part C: Emerging Technologies, 104, 428–442.
22	Dzindolet, M. T., Pierce, L. G., Beck, H. P., & Dawe, L. A. (2002). The Perceived
23	Utility of Human and Automated Aids in a Visual Detection Task. Human
24	Factors, 44(1), 79-94.
25	Fletcher, K. I., Bartlett, M. L., Cockshell, S. J., & McCarley, J. S. (2017). Visualizing
26	probability of detection to aid sonar operator performance. In $Proceedings$ of the
27	Human Factors and Ergonomics Society Annual Meeting (Vol. 61, pp. 302–306).
28	Gigerenzer, G., & Hoffrage, U. (1995). How to improve bayesian reasoning without
29	instruction: frequency formats. Psychological review, $102(4)$, 684.

1	Goodie, A. S., & Fantino, E. (1996, mar). Learning to commit or avoid the base-rate
2	error. Nature, 380, 247.
3	Hoffrage, U., Hafenbrädl, S., & Bouquet, C. (2015). Natural frequencies facilitate
4	diagnostic inferences of managers. Frontiers in Psychology, 6, 642.
5	Jian, JY., Bisantz, A. M., & Drury, C. G. (2000). Foundations for an empirically
6	determined scale of trust in automated systems. International Journal of
7	Cognitive Ergonomics, $4(1)$, 53–71.
8	Kahneman, D. (2011). Thinking, Fast and Slow. New York: Faraus, Straus and Girous.
9	Lee, J. D., & See, K. A. (2004). Trust in automation: designing for appropriate
10	reliance. Human Factors, $46(1)$, 50–80.
11	Macmillan, N. A., & Creelman, C. D. (2005). Mahwah, NJ: Lawrence Erlbaum.
12	Mandel, D. R. (2014). The psychology of bayesian reasoning. Frontiers in Psychology,
13	5,1144.
14	McBride, S. E., Rogers, W. A., & Fisk, A. D. (2011, November). Understanding the
15	Effect of Workload on Automation Use for Younger and Older Adults. Human
16	Factors, 53(6), 672–686.
17	McGuirl, J. M., & Sarter, N. B. (2006). Supporting trust calibration and the effective
18	use of decision aids by presenting dynamic system confidence information. $Human$
19	Factors, $48(4)$, 656–665.
20	Muir, B. M., & Moray, N. (1996). Trust in automation. part ii. experimental studies of
21	trust and human intervention in a process control simulation. Ergonomics, $39(3)$,
22	429–460.
23	Neyedli, H. F., Hollands, J. G., & Jamieson, G. A. (2011). Beyond identity:
24	Incorporating system reliability information into an automated combat
25	identification system. Human Factors, $53(4)$, $338-355$.
26	Parasuraman, R., & Riley, V. (1997). Humans and Automation: Use, Misuse, Disuse,
27	Abuse. Human Factors, $39(2)$, $230-253$.
28	Petersen, L., Robert, L., Yang, X. J., & Tilbury, D. (2019). Situational Awareness,
29	Driver's Trust in Automated Driving Systems and Secondary Task Performance.

1	SAE International Journal of Connected and Automated Vehicles, $2(2)$.
2	Sorkin, R. D., Kantowitz, B. H., & Kantowitz, S. C. (1988). Likelihood alarm displays.
3	Human Factors, $30(4)$, 445-459.
4	Tanner, W. P., & Swets, J. A. (1954). A decision-making theory of visual detection.
5	Psychological Review, $61(6)$, $401-409$.
6	Walliser, J. C., de Visser, E. J., & Shaw, T. H. (2016). Application of a system-wide
7	trust strategy when supervising multiple autonomous agents. In $Proceedings \ of \ the$
8	Human Factors and Ergonomics Society Annual Meeting (Vol. 60, pp. 133–137).
9	Wang, L., Jamieson, G. A., & Hollands, J. G. (2009). Trust and reliance on an
10	automated combat identification system. Human Factors, $51(3)$, 281-291.
11	Wiczorek, R., & Manzey, D. (2014). Supporting attention allocation in multitask
12	environments: effects of likelihood alarm systems on trust, behavior, and
13	performance. Human Factors, $56(7)$, 1209–1221.
14	Yang, X. J., Unhelkar, V. V., Li, K., & Shah, J. A. (2017). Evaluating effects of user
15	experience and system transparency on trust in automation. In $Proceedings$ of the
16	2017 ACM/IEEE International Conference on Human-Robot Interaction (HRI
17	'17) (pp. 408–416).

Biographies

2	${\bf Na}~{\bf Du}$ is a Ph.D. student in the Department of Industrial and Operations
3	Engineering at the University of Michigan Ann Arbor. She completed a B.S. in
4	Psychology in Zhejiang University, China.
5	
6	${\bf Kevin}~{\bf Y}.~{\bf Huang}$ is an undergraduate student studying Industrial and
7	Operations Engineering at the University of Michigan Ann Arbor.
8	
9	X. Jessie Yang is an Assistant Professor in the Department of Industrial and
10	Operations Engineering and an affiliated faculty at the Robotics Institute, University of
11	Michigan Ann Arbor. She obtained her PhD in Mechanical and Aerospace Engineering
12	(Human Factors) from Nanyang Technological University Singapore in 2014.
13	

Appendix A: Pilot study

1

We conducted a pilot study to create a scoring system for the experiment. In the experimental task, participants performed the tracking task and the detection task simultaneously. Participants were required to make a trade-off decision on which task to perform at any time, i.e. if they decided to check the four images, they would probably earn more points in the detection task but fewer points in the tracking task, and vice versa.

Therefore, a pay-off structure has to be determined to eliminate potential bias 8 toward either the tracking or the detection task by ensuring that the potential gain in 9 one task is approximately equal to the opportunity cost in the other task. In order to 10 determine the parameters of the scoring system, first we set the tracking task score on a 11 scale from 0 to 10, based on the distance of the green circle from the center of the 12 crosshair. Next, we defined the detection task score as a function of the detection 13 accuracy and time, i.e. $a + b \times \frac{Time}{10000 \text{ milliseconds}}$. To determine a and b, a total of 10 14 participants between the age of 19 and 23 participated in the pilot study. They 15 performed a tracking task only block and a combined task block, each with 50 trials, 16 with a 5-minute break in between. In the combined task block, participants performed 17 both tasks and were instructed that two tasks were equally important. They could 18 optimize their performance by minimizing the distance between the green circle and the 19 center of the display, and by detecting the threats as accurately and as quickly as 20 possible. The block order was counterbalanced. One participant's data was removed 21 from data analysis due to his significantly poor performance on the tracking task. The 22 results showed that when doing both tasks concurrently, participants lost on average a 23 score of 3.7 points on their tracking tasks (Tracking task only block: M = 8.8, SD =24 1.2; Combined task block: M = 5.1, SD = 1.1). We then varied a and b to make sure 25 they would gain approximately 3.7 points with a similar SD from the detection task. As 26 a result, $5-5 \times \frac{Detection Time}{10000 \text{ milliseconds}}$ was set to be the scoring scheme of the detection task. 27 In each combined task trial, it is possible to obtain a maximum score of 15 points, 10 28 points from the tracking task and 5 points from the detection task. 29