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ABSTRACT
Automated driving has many potential benefits, such as improving driving safety and reducing drivers’
workload. However, from a human factors’ perspective, one concern is that drivers become increasingly
out of the control loop once they start to engage in non-driving-related tasks, which makes it difficult for

10 the drivers to take over control in some situations. In the present study, we examined reviewers’
comments of YouTube videos featuring takeover transitions on commercially available autonomous
vehicles and categorized the comments into four topics: Non-driving related tasks, automation cap-
ability awareness, situation awareness, and warning effectiveness. Then we investigated people’ opi-
nions on the design of the takeover mechanism of commercially available autonomous vehicles using

15 topic mining and sentiment analysis, and we found that 1) the topic of automation capability awareness
received many more positive comments than both negative and neutral comments while the distribu-
tions of positive, negative, and neutral comments were fairly even in other topics and 2) people had
extreme positive and negative opinions in non-driving related tasks than other topics. Finally, we
discussed possible design recommendations in order to facilitate takeover transitions.

20

1. Introduction

Automated driving is becoming an engineering reality (Howard &
Dai, 2014). According to the Society of Automotive Engineers
(SAE), driving automation can be categorized into 6 levels with

25 Level 0 being manual driving and Level 5 fully automated driving
(SAE, 2016). Although there is still speculation on when Level 5
full automation will be realized eventually, Level 2 partial automa-
tion and near Level 3 conditional automation have been gradually
implemented on vehicles (e.g., Volvo XC90, Tesla all models,

30 Mercedes S class), and clear roadmaps toward Level 4 automation
have been announced by major automotive manufacturers.

With automation capability advancing from Level 2 to
Level 3 and above, human drivers will become increasingly
out of the control loop in the dynamic driving task. With

35 Level 2 automation, the driver is ultimately responsible for the
driving task and has to actively monitor the road conditions.
With Level 3 automation, by contrast, the autonomous vehicle
is able to monitor the environment in some condition, which
allows the driver to engage in other non-driving related tasks

40 (Gold, Happee, & Bengler, 2017). If the autonomous vehicle
reaches its system limit (e.g., automation failure, adverse
weather, lane marks disappearance), however, the driver will
be requested to resume control of the vehicle in a limited
amount of time. According to Bainbridge (1983), takeover

45 transition consists of two primary tasks, including monitoring
and taking over control. Specifically, it involves the human

driver receiving information, processing the information, and
executing both lateral and longitudinal control of the vehicle.

Despite many potential benefits brought by automated
50driving, that drivers decoupled from the operational level of

control makes it difficult for them to take over in situations
with which the automation is not able to deal (Eriksson &
Stanton, 2017; Gold, Körber, Lechner, & Bengler, 2016). With
regard to this, in the present study, we aimed to 1) identify

55major human factors issues underlying takeover transitions by
examining takeover events through YouTube videos and
YouTube viewers’ comments on these videos, to 2) investigate
people’s opinions over the design of takeover mechanism of
commercially available autonomous vehicles, and 3) to sug-

60gest design improvements in order to facilitate takeover tran-
sitions. Compared with traditional experimental studies using
driving simulators in this area, the present study identifies the
human factors issues through videos filmed in a naturalistic
driving environment. According to Barry and Eric (2017) Q2,

65such YouTube videos filmed by real users provided
a remarkable source of data that focus on interaction and
use of the autonomous vehicle technologies under different
field circumstances. In addition, Siersdorfer, Chelaru, Nejdl,
and Pedro (2010) conducted a large-scale (more than

706 million comments on 67,000 YouTube videos across 6
categories) in-depth study of YouTube comments and they
demonstrated that YouTube comments were able to deter-
mine the community acceptance of particular events, topics,
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and content. Uryupina, Plank, Severyn, Rotondi, and
75 Moschitti (2014) also presented a dataset of user comments

on YouTube videos for sentiment analysis with regard to the
video and the product discussed at the comment level.
Asghar, Ahmad, Marwat, and Kundi (2015) summarized dif-
ferent techniques of sentiment analysis on YouTube com-

80 ments. Therefore, we believe that by analyzing a large
number of comments from the takeover transition videos (of
Level 2/close to Level 3 autonomous vehicles) on YouTube in
the market now, the issues identified can inspire possible
design solutions that are helpful for the research and devel-

85 opment of autonomous vehicles.

2. Related work

Research has shown that challenges have to be tackled for
highly automated driving, especially for those associated with
takeover transitions in order to secure the benefits brought by

90 autonomous vehicles. For example, Casner, Hutchins, and
Norman (2016) pointed out multiple challenges of partially
automated driving, including the navigation system (e.g., brit-
tleness and trust) and the driver warning system (e.g., com-
placency, nuisance alerts, and short time frames). They

95 proposed that driving should be a shared task between
humans and the vehicle with partial automation and
a transparent interface that allows natural interaction between
the driver and automation was needed. Borojeni et al. (2017)Q3

discussed how to design effective control transition interfaces
100 in highly automated vehicles. By identifying the takeover

procedures both from the driver to the automated vehicle
and from the vehicle to the driver, they identified various
challenges involved in the takeover transition period, such as
tasks and actors involved, warning display modalities, urgency

105 levels of takeover requests, situation awareness, and non-
driving related tasks. McCall, McGee, Meschtscherjakov,
Louveton, and Engel (2016) proposed a taxonomy of takeover
situations in automated driving, including scheduled and
non-scheduled situations. Compared to scheduled takeovers,

110 non-scheduled takeovers tended to be more critical, especially
in emergency situations. They also identified various chal-
lenges associated with takeover transitions, such as legal
responsibility, situation awareness, drivers’ driving skills, and
in-vehicle contexts.

115 Among many factors, warning displays play an important
role in taking drivers back into the control loop in the transition
process. Usually, three types of displays are used, including
visual, auditory, and tactile. For example, Naujoks, Mai, and
Neukum (2014)Q4 examined the influence of urgency levels of

120 takeover requests by using visual or visual and auditory warning
displays. They found that when the takeover requests were pre-
sented in both visual and auditory forms, drivers had shorter
hands-on time and better lateral vehicle control compared to
those presented only in a visual form. Politis et al. (2018) exam-

125 ined four types of dialogue-based displays for takeover requests,
i.e., a countdown-based system, a repetition-based system,
a response-based system, and a multimodality-based system.
Their experimental results showed that drivers liked displays
with simplicity and, among the four tested displays, the count-

130 down-based system resulted in the shortest takeover time with

higher perceived usability and acceptance. Assuming that an
increase in automation would increase safety, Hock, Kraus,
Walch, Lang, and Baumann (2016) investigated different strate-
gies to persuade drivers to engage in automation in order to

135improve safety. They compared three conditions, including
a control condition (i.e., no feedback), and two treatment con-
ditions (i.e., audio spoken feedback, and audio + a virtual co-
driver). Their results showed that compared to the drivers in the
control condition, those in the two treatment conditions had

140significantly longer automation engaged.
While many studies applied visual and/or auditory dis-

plays, tactile displays received increasingly more attention.
Petermeijer et al. (2017) Q5examined six different types of take-
over requests in terms of auditory beeps, vibration in the

145driver seat, and their combinations. Furthermore, both non-
directional and directional types of information were also
provided (i.e., sounds produced from the right speaker or
the left speaker and vibration of motors in the right or left
column). They found that multimodal takeover requests pro-

150duced shorter reaction time and higher self-reported ratings
in terms of usefulness and satisfaction, while directional infor-
mation did not result in a directional response, possibly due
to the fact that overtaking on the right was not allowed on
German highways. Borojeni et al. (2017) Q6designed a shape-

155changing steering wheel that was able to convey contextual
information during the takeover transition period in order to
improve drivers’ situation awareness. Although their results
did not support the notion that haptic cues were able to assist
drivers in decision making as such cues were not perceivable,

160they did reassure drivers of their decision making. The
authors suggested that contextual haptic cues should be
designed to contact the human body instead.

While it is allowed to perform non-driving related tasks in
highly automated driving (e.g., SAE Level 3), its influence on

165takeover performance and quality, especially with a limited
time budget, has to be investigated in order to inform design.
Mok, Johns, Miller, and Ju (2017) investigated the influence of
non-driving related tasks on takeover performance and they
found that when drivers engaged in an active secondary task,

170i.e., playing a game on a tablet, they needed more time to take
over control from automation. Radlmayr, Gold, Lorenz, Farid,
and Bengler (2014) explored the influence of different types of
non-driving related tasks on takeover performance, including
the cognitive n-back task (a verbal-cognitive task that asks

175participants to verbally repeat a sequence of numbers with an
offset of n steps) (Reimer, Mehler, Wang, & Coughlin, 2010)
and the visual surrogate reference task (i.e., a visual-motoric
task that asks participants to find the bigger circle among the
smaller ones on a screen) (ISO14198, ISO14198, 2012).

180Compared to those in the cognitive n-back task, those in the
visual surrogate reference task only had a significantly higher
collision rate, while other measures (takeover time, longitu-
dinal acceleration, and time to collision) had no significant
differences. Such results indicated that both visual distraction

185and cognitive distraction led to worse takeover performance
than that in manual driving.

Takeover time is also a critical issue in the takeover transi-
tion period and the optimal takeover time has been explored
in different studies. Mok et al. (2017) found that participants
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190 with a 2-second lead time were not able to take over control
safely while those with a 5- or 8- second lead time were able to
take over control during a hazard situation successfully.
Likewise, Gold, Damböck, Lorenz, and Bengler (2013) also
found that those with a shorter takeover lead time (i.e., 5 sec-

195 onds) did react faster than those with a longer takeover lead
time (i.e., 7 seconds), but performed significantly worse.
Kuehn, Vogelpohl, and Vollrath (2017) examined takeover
times while drivers were performing non-driving related
tasks. They found that when drivers were highly distracted,

200 it took drivers 3–4 seconds to look at the road for the first
time, and 6–7 seconds to have their feet on the pedals and
hands on the steering wheel, 7–8 seconds to deactivate auto-
mation, and 12–15 seconds to glance at the mirror and speed-
ometer to understand the driving situation. Compared to the

205 participants assigned to drive manually, these highly dis-
tracted drivers were delayed up to 5 seconds to have the
situation awareness needed to understand the driving
situation.

3. Method

210 First, we conducted a YouTube video search to find videos
containing transitionmoments of commercially available auton-
omous vehicles across different automotive manufacturers.
YouTube.com contains a large number of third-party videos
and those featuring autonomous driving experience are first

215 hand, real-world footage by early adopters of this new technol-
ogy. As such, we sifted through hundreds of videos and identi-
fied 20 YouTube videos and each contained at least one takeover
transition across six automotive manufacturers. The collected
videos had a combined number of over 140 minutes

220 (Mean = 7.03 minutes and standard deviation = 10.41 minutes).
They provided a satisfactory number of samples that were easily
recognized by viewers to generate meaningful comments. Of
these collected videos, we crawled 4464 comments and kept
3454 after a cleaning process by removing meaningless com-

225 ments and those written in languages other than English.
Second, we conducted a systematic comparison between

traditional experimental research in takeover transitions in
automated driving and the comments provided by YouTube
viewers after watching the takeover transitions in order to

230identify the human factors issues involved in this area.
Traditional experimental studies explicitly listed the human
factors issues in their studies, which guided us to identify the
issues that were being discussed in the YouTube comments.
However, we did recognize the differences between these two

235types of sources and the major ones were discussed in
Section 4.

Third, in order to further automate this process, we con-
ducted a topic mining analysis using fastText (Joulin, Grave,
Bojanowski, & Mikolov, 2017) based on the human factors

240issues identified in step 2. fastText is a library created by
Facebook and it is used to learn word representation and
sentence classification. It was reported that its performance
was on par with deep learning methods, but with extreme
efficiency (Joulin et al., 2017). Figure 1 shows the model

245architecture of fastText. It first looks up the N word vectors
(L2 short for Layer 2) in a preprocessed comment (L1), which
are then averaged (O2 short for Operation 2) into a hidden
comment representation (L3). The comment representation,
shared among features and classes, is then fed into a linear

250classifier with rank constraint and a fast loss approximation
(O3). Finally, the output is a softmax layer (L4) producing
a probability distribution over labeled classes (O4), which are
topic (L5) in this research. In the lookup step, fastText applies
a hashing trick (Weinberger, Dasgupta, Langford, Smola, &

255Attenberg, 2009) (O1) that is a fast and space efficient way of
vectorizing features by using the hash values of the features as
direct indices of the vector. For ngram features, it makes use
of sub-word information (i.e., character n-grams) so that
wrongly spelled words (e.g., ‘goood’) can have a similar

260word vector to the correct one (‘good’), which are often seen
in social media. It also gives an option to use hierarchical
softmax at the output layer when the number of classes is
large, reducing the computational complexity from linear time
to log time.

265Fourth, based on each topic identified, we further per-
formed a sentiment analysis using the VADER (Valence
Aware Dictionary and sEntiment Reasoner) sentiment tool
(Hutto & Gilbert, 2014) to understand reviewers’ opinions
on each comment. VADER made use of an affective lexicon

270list and was built on syntactic rules, especially suitable for
analyzing social media text data. The main advantage of

Figure 1. Model architecture of fastText, where L (in L1) represents layer and O (in O1) operation.
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VADER is that it not only recognizes the polarity of the social
media comment, but also quantifies its intensity on a − 1 to 1
scale with extremely good accuracy. In their study, Hutto and

275 Gilbert (2014) showed that VADER (r = 0.881, F1 = 0.96)
performed as well as individual human raters (r = 0.888) in
terms of correlation coefficient and outperformed individual
human raters (F1 = 0.84) in terms of F1 accuracy when
classifying tweets into positive, neutral, and negative.

280 Specifically, in order to calculate the intensity score of each
comment, VADER summed the valence scores of each word
in the lexicon and adjusted using the rules proposed and
normalized between −1 (most extreme negative) and 1
(most extreme positive). We thus used scores between 0 and

285 1 as the intensity of positive comments and those between −1
and 0 as the intensity of negative comments. However, we
used the absolute value of negative intensity scores so that
both can be in the same scale from 0 and 1. The lexicons
include those well-established word banks (e.g., LIWC,

290 ANEW, and GI) as well as a full list of emoticons (e.g., ☺),
sentiment-related acronyms, initialisms (e.g., LOL, BTW), and
frequently used slangs (e.g., nah, meh). These lexicons were
rated from −4 (extremely negative) to 4 (extremely positive)
using Amazon Mechanical Turk with very good quality con-

295 trol (e.g., screening, training, selecting and data quality check-
ing, evaluations and validation). For example, okay was rated
as 0.9, good was rated as 1.9, and fantastic was rated as 2.6,
while bad was rated as −2.5 and worst was rated −3.1. Five
rules were used to modify the intensity of the sentiment,

300 including punctuation (e.g., the service is great!), capitaliza-
tion (e.g., the service is GREAT), degree modifiers (e.g., the
service is extremely great), the contrastive conjunction (e.g.,
the service is great, but the food is not good), and the tri-gram
before the sentiment-laden lexical features (e.g., the service

305 isn’t really all that great).
Fifth, based on the opinionated reviews, we finally dis-

cussed possible design improvements in order to facilitate
the takeover transition process in highly automated driving.
The goal for the design improvements is to ensure a smoother

310 and better takeover transition, to reduce human error, to
increase situation awareness, to reduce reaction time, and
thus to achieve a safer and comfortable driving experience
for drivers currently using Level 2 and near Level 3 automa-
tion systems.

315 4. Results

4.1. Difference between the YouTube study and
literature

YouTube has a large number of users and thus the 20 selected
transition videos attracted thousands of comments. The

320 majority of the comments carried a sentiment tone to express
their attitudes towards objects and things discussed in the
video. Of all the comments collected, 63.6% of them were
not neutral. After cleaning and removing the noisy data,
81.6% of them were not neutral. However, the text data

325 provided by YouTube viewers were much less systematic
and structured compared to academic publications. In addi-
tion, the data had lots of noise and the cleaning process

removed 66.65% of the data. Nevertheless, the cleaned data
tended to have interesting and implicit feedback knowledge

330about automated driving and takeover transitions. Unlike
vehicle information provided by manufactures, which often
highlighted vehicle performance using technical specifica-
tions, the comments generated by users assessed the autono-
mous vehicle in concrete use cases (e.g., highways, urban, and

335rural areas) with personal preferences and various user per-
spectives (Chen & Xie, 2008). In this sense, these user-
generated comments have an important role for the designers.
The human factors topics in the literature were often expli-
citly pointed out, which offered us overall guidance to sift

340through the YouTube comments to understand the topics (see
Section 4.2 for detailed differences). Furthermore, with senti-
ment analysis and topic mining, we were able to extract the
implicit issues with current autonomous vehicles and propose
design recommendations.

3454.2. Human factors topics

We watched the 20 YouTube videos and manually labeled 500
comments selected randomly from the 3454 comments made
by the YouTube viewers. Using a grounded approach (Strauss
& Juliet, 1994 Q7), we identified four topics pertinent to the

350takeover transitions in highly automated driving, including

● Non-driving related tasks,
● Automation capability awareness,
● Situation awareness,
● Warning effectiveness.

The topic of non-driving related tasks discusses what tasks,
355other than driving, drivers could do during automated driving

and many viewers expressed their projected non-driving
related tasks in the future automated driving. Examples
include “hollysh** thanks to Tesla I can text while driving,
talk on phone, drink, smoke, have sex, sleep. The future is

360awesome!”, “they will be doing full make up and texting … ”,
“Sit back, relax, text away, take a nap, let the car get you to
your destination.” Compared with the studies involving non-
driving related tasks in the literature, the biggest difference
was that these comments mentioned many more daily activ-

365ities that could be done in the vehicle as evidenced by the
example comments here. Previous studies often made use of
standardized tasks, such as the cognitive n-back task, the
visual surrogate reference task (e.g., Radlmayr et al., 2014),
and/or a small number of non-driving related tasks (e.g., Mok

370et al., 2017). These tasks in the literature offered good experi-
mental control in the laboratory environment and investi-
gated their influence on takeover performance. However,
a more comprehensive list of non-driving related tasks should
be examined in order to better understand their influence on

375takeover performance.
Automation capability awareness refers to drivers recog-

nizing whether the environment and the vehicle’s operating
conditions are suitable for turning or keeping the automated
driving system on. Examples include “I wonder how well it

380works in foggy or snowy conditions. How well will it brake on
icy roads? Is that all programmed in the software? Amazing.
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Things like leaving yourself more room to brake and stop … ”
The naturalistic driving environment is very complicated and
the drivers involved in the videos were not very sure if the

385 vehicle was able to handle the driving task under different
driving environments. This also aroused the curiosity of the
viewers in their comments on automation capability in differ-
ent driving conditions. The primary difference is that many
published studies were conducted in driving simulators (e.g.,

390 Hock et al., 2016; Politis et al., 2018). The participants were
usually told that they did not have to worry about anything
when the automated mode was engaged and only were
required to take over control from the automated driving
when a takeover request was issued. This potentially involves

395 one of the major human factors issues, i.e., trust in automa-
tion (Yang, Unhelkar, Li, & Shah, 2017). If the driver over-
relies on the automation, under various driving conditions,
the drivers would let automation be in control without taking
over or ignoring the takeover request. If the driver distrusts

400 automation, then the benefits claimed by autonomous vehi-
cles would not be achieved. The simulation studies in the
literature assumed that the participants would trust the vehi-
cle to the largest possible extent whether the automated mode
was engaged or the takeover request was issued, which tended

405 to be not consistent with naturalistic automated driving in
real life. Therefore, the risks of autonomous vehicles and the
curiosities of the participants in automated driving might be
missing in these simulation studies.

Situation awareness dicusses how to manage drivers’ atten-
410 tion during automated driving so that the driver can maintain

a high level of situation awareness of the driving environment
and how to regain situation awareness effectively when the
takeover request is initiated in order to take over control
successfully. Examples include “Man … I’m cringing at you

415 folding your arms. Especially in traffic and on roads like that.
There’s a reason Elon said to have your hands on the wheel”
and “Would you be actually able to watching videos and get
back to road safely”. The YouTube videos available were
mostly related to SAE Level 2 to near SAE Level 3 automated

420 driving, and thus the drivers were still monitoring the driving
environment from time to time although their hands might be
off the steering wheel. Hence, many takeover transition sce-
narios tended to be less urgent. However, many studies (e.g.,
Borojeni, Wallbaum, Heuten, & Boll, 2017; Petermeijer et al.,

425 2017Q8 ) in the literature focused more on how to resume dri-
ver’s situation awareness while they were immersed in non-
driving related tasks both in emergency and non-emergency
situations. In this aspect, these studies made use of different
combinations of warning displays to explain the potential

430 hazards, steering directions, and emergency levels, etc.
Therefore, these studies explored many more possibilities
than the existing autonomous vehicles in the collected
YouTube videos.

Warning effectiveness describes the system’s capability of
435 alerting drivers for any impending dangers or conditions that

require takeover. Examples include “It does the beeping and
sh** so if you were to fall asleep it would wake you up, and you
would take control … ”, “That’s pretty annoying. The steer sign
coming on a lot”, “will it just alert you like it did when the lane

440 markings disappeared!!” The current warning displays mainly

capitalized on the auditory and visual modalities while studies
in the literature also investigated vibrotactile warnings and
their combinations with other types of warnings during the
takeover transition period (Petermeijer et al., 2017 Q9;

445Petermeijer, Hornberger, Ganotis, de Winter, & Bengler,
2017) and the results showed that vibrotactile warnings effec-
tively helped drivers resume situation awareness and reduced
takeover reaction time. However, vibrotactile warnings are
still not widely deployed in the current autonomous vehicles

450as evidenced in the examples.
YouTube users also commented on a variety of other

topics related to automated driving, including cybersecurity,
joy of driving, government policies and laws. Others
expressed their attitudes towards the posted videos or parti-

455cular automotive manufactures. Example comments include,
“So, how long till someone hacks in to your car and makes it
crash or commit crimes from a remote location? (cybersecur-
ity)”, “Driving is fun, it’ll suck if it ever becomes completely
autonomous (joy of driving)”, “What if two auto-pilot cars do

460an accident, whose fault is it? The car company, the citizen,
insurance, … ? (policy and law)”, “Yes do more in depth videos.
I enjoy watching your videos & that is a really nice car you
have (video)”, and “Tesla really awesome (automotive
manufacturer)”.

465In summary, we listed the major differences between the
YouTube comments and previous studies identified in the
literature in Table 1.

4.3. YouTube comment topic mining & sentiment
analysis

470We applied fastText with C++ to extract the four human
factors topics in the YouTube comments. In order to do so,
we manually labeled the selected 500 comments into five
different categories, including the four topics mentioned
above and one that did not fall into any of the four issues,

475named as “Others”. These 500 comments were distributed as
follows: 44 belonged to the category of non-driving related
tasks, 92 belonged to the category of automation capability
awareness, 80 belonged to the category of situation awareness,
and 33 belonged to the category of warning effectiveness, and

480the remaining 251 belonged to the category of others. Using
a 5-fold cross-validation strategy, we obtained 80% precision
and 80% recall. We then trained the topic classification model
using these 500 comments to classify the rest of the com-
ments. During the predicting process, an incremental learning

485process was adopted, i.e., those predicted output with prob-
abilities larger than certain threshold were used again to
update the training model. The reason we adopted such
a method was that the performance was enhanced with
a relatively small number of labeled data and with extreme

490efficiency of fastText, the model was retrained and updated
within seconds.

As a way for validation, Figure 2 depicts the incremental
training process when we only randomly selected 400 labeled
comments for training at the beginning and the rest 100

495labeled comments for testing in each iteration. The left
y-axis shows the number of comments left and the right
y-axis shows the F1 measure calculated as 2� Precision�
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Recall= Precisionþ Recallð Þ as the harmonic mean of precision
and recall. First, we set the probability threshold as 0.8 for the

500 first 10 iterations. Hence, those output results with prediction
probabilities over 0.8 were added to the training data to
update the model. Then for the 11th–15th iterations, we set
the probability threshold as 0.6 and for the rest iterations, we
set the probability threshold as 0.5. As the number of itera-

505 tions increases, the number of comments left decreases and F1
measure tends to increase. After 17 iterations, 32 comments
were left, and we manually labeled them.

The predicted results were shown in Table 2 in terms of the
numbers and the percentages of comments in each human factor

510 topic. Among them, about two-thirds of them were categorized
into others and 1152 comments were predicted for the four
major topics identified above. This showed that the majority of
the comments seemed to be noise in the YouTube comments
which were discarded. Among the four topics, we found that the

515 topic of automation capability awareness accounted for nearly
70% of the valid comments, whereas warning effectiveness only
accounted for 4.34%. Both non-driving related tasks and situa-
tion awareness accounted for 17.53% and 9.03%, respectively.
Such an uneven distribution tended to show YouTube viewers’

520 emphasis was on whether the driving environment was suitable
for the autonomous mode or not. These comments indicated the
general public’s caution and curiosity to test the boundary of the
current technologies in automated driving in the market. Not

many viewers paid attention to the importance of warning
525effectiveness. This seemed contradictory from what we found

in the literature. The possible reason is that the takeover events
involved in the YouTube videos were successful due to the fact
that the driving conditions seemed to be less critical than emer-
gency situations and the drivers tended to monitor the driving

530environment. However, the takeover scenarios in many studies
(e.g., Merat, Jamson, Lai, & Carsten, 2012; Mok et al., 2017;
Radlmayr et al., 2014) in the literature were critical and the
drivers were involved in non-driving related tasks, which needed
effective warning in terms of both a sufficient time budget and

535an effective presentation form to bring the drivers back to the
control loop quickly.

Nevertheless, the topics of the comments did not directly
show YouTube viewers’ opinions and acceptance toward
automated driving technologies. Hence, we performed senti-

540ment analysis using the VADER sentiment analysis tools in
Python for the 1152 relevant comments spanning across six
different automotive manufacturers. The tool categorized the
sentiment of a comment into positive, neutral, and negative. It
also quantified sentiment intensity on a 0 to 1 scale. Among

545all the comments, 46.96% of them were positively evaluated,
18.40% were neutral, and 34.64% were negatively evaluated,
indicating that almost half of the YouTube users tended to
favor the current commercially available autonomous
vehicles.

Table 1. Major differences between YouTube comments and typical studies identified in the literature.

Human Factor
Topics The focus of YouTube Comments The focus of Typical Studies in Literature

Non-driving
related tasks

A variety of daily activities was mentioned Standardized non-driving related tasks or a small number of daily
activities

Automation
capability
awareness

Unknown if the vehicle was able to handle the driving task in
naturalistic driving environments

Known that the vehicle can handle the driving task or not in simulated
driving environments

Situation
awareness

How to resume situation awareness in SAE Level 2 to near SAE Level
3 automated driving, in which drivers monitor the driving situations
continuously;
Non-emergency takeover scenarios

How to resume situation awareness when drivers were involved in
non-driving related tasks without paying attention to the driving
conditions continuously;
Both emergency and non-emergency takeover scenarios

Warning
effectiveness

Warning displays with auditory and visual modalities and their
combinations;
The annoyance caused by the warning

Warning displays with auditory, visual, and vibrotactile modalities and
their combinations;
Warning modality and time budget

Figure 2. The incremental learning process involved in topic prediction. The left y-axis indicates the number of the comments left and the right y-axis indicates the
F1 measure as the number of iterations increases.
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550 Figure 3 summarizes the distributions of positive, negative,
and neutral comments associated with each of the four human
factors topics. Chi-squared tests were applied to test the dis-
tributions of positive, negative, and neutral comments across
the four topics. We found that automation capability aware-

555 ness was significantly different from situation awareness
ðχ2 1ð Þ ¼ 23:46; p< 0:001Þ and non-driving related tasks
ðχ2 1ð Þ ¼ 25:07; p< 0:001Þ. The automation capability aware-
ness topic had many more positive comments than both
negative and neutral comments, while the distributions of

560 positive, negative, and neutral comments were fairly even in
the topics of situation awareness and non-driving related
tasks.

Figure 4 shows the average intensity scores for the positive
comments and the negative comments with their standard

565 error. To compare the intensity scores among the four
human factors topics, we applied one-way analysis of variance
(ANOVA) for negative and positive intensity scores. For
negative intensity scores, we found a significant difference
(F 3; 395ð Þ ¼ 3:29; p< 0:05). Post-hoc analysis was carried

570 out with Bonferroni correction and the results revealed that
the negative intensity score of the automation capability
awareness topic was significantly smaller than that of non-
driving related tasks ðp< 0:05Þ. This demonstrated that people
had a stronger negative opinion in non-driving related tasks

575 than that in automation capability awareness. For positive
intensity scores, we also found a significant difference
F 3; 537ð Þ ¼ 7:14; p< 0:001. Post-hoc analysis was also con-
ducted with Bonferroni correction and the results showed
that the positive intensity score of non-driving related tasks

580 was marginally, significantly, and significantly larger than that
of situation awareness (p< 0:10), that of warning effectiveness

(p< 0:05), and that of automation capability awareness
(p< 0:001), respectively. This showed that people had
a stronger positive opinion in non-driving related tasks than

585that in all other three topics. In other words, people had
extreme positive and negative opinions in non-driving related
tasks than other topics. Furthermore, we compared positive
intensity scores with negative intensity scores within each
topic. We only found that positive intensity score was margin-

590ally smaller than negative intensity score in automation cap-
ability awareness, F 1; 682ð Þ ¼ 2:65; p< 0:100. It showed that
people evaluated automation capability awareness marginally
less positively than negatively.

Figure 5 shows the overall evaluation of six automotive
595manufacturers by aggregating their positive and negative

intensity scores. Among them, Tesla received 859 comments
out of 1152 comments, followed by Mercedes, while others
including Volvo, BMW, Audi, and Honda had relatively small
numbers of comments. Such a distribution tended to be con-

600sistent with the market share of autonomous vehicles. It
seemed that the positive evaluation and negative evaluation
of Tesla canceled out for all the four topics, while Volvo and
Honda all received positive evaluation across four topics. Audi
had all positive evaluation except situation awareness while

605BMW was the opposite. Mercedes was positively commented
on non-driving related tasks and automation capability and
negatively commented on situation awareness and warning
effectiveness. However, due to the limited number of com-
ments collected for Volvo, BMW, Audi, and Honda, it should

610be cautious to interpret such results.

5. Potential design improvement

5.1. Non-driving related tasks

The non-driving related tasks that the drivers were performing
seem to have a major impact on the takeover performance and

615thus are widely examined in the literature (e.g., Mok et al., 2017;
Radlmayr et al., 2014). However, the viewer’s comments on this
topic were primarily focused on non-driving related tasks in terms
of what they could do during automated driving while maintain-
ing the driving performance. For example, one commented,

620“Women must be so excited, now they can do their makeup all the

Table 2. Numbers and percentages of valid YouTube comments in each human
factor topic.

Human Factor Topics # Comments %Comments

Non-driving related tasks 202 5.85%
Automation capability awareness 796 23.05%
Situation awareness 104 3.01%
Warning effectiveness 50 1.45%
Others 2302 66.65%
Grand Total 3454 100.00%

Figure 3. Numbers of positive, neutral and negative comments in four different
topics.

Figure 4. Comparisons of sentiment intensity scores among different topics.
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way towork” [0.4795], “Now you can text until you kill yourself !” [-
0.7177], and “Nice. I can finally watch my YouTube vids while
driving woot woot:D” [0.6808], where the numbers inside of []
indicated the predicted sentiment intensity scores. Other viewers

625 expressed their interests in automated driving under the influence
of drinking and other substances (e.g., drugs) as well as sleeping.
Example comments include “I just need a self driving car so I can
roll blunts while driving” [0] and “Stuck in traffic on the interstate
that would be great. I could just recline the seat and go to sleep”

630 [0.6249]. However, previous studies have shown that under the
current automation capabilities (e.g., SAE Level 2 and near 3
automation), such behaviors are still dangerous. For example,
Wiedemann et al. (2018) showed that drivers with 0.08% blood
alcohol content had significantly worse takeover performance

635 than those without any alcohol or with a level of 0.05%.
Vogelpohl, Kühn, Hummel, and Vollrath (2018) showed that
sleep-related fatigue made those in automated driving respond to
takeover requests much slower those in manual driving.
Nevertheless, studies did show that automated driving without

640 any non-driving related tasks tended to induce disengagement
related fatigue (Gold et al., 2017; Vogelpohl et al., 2018), such as
boredom. In this sense, drivers are recommended to engage in
certain types of non-driving related tasks in order to keep them at
a certain level of alertness. In addition, regulations and policies still

645 need to be made in order to make sure which non-driving related
tasks should and should not be allowed in the current Level 2 –
Level 3 autonomous vehicles.

In addition, one good way to both engage users with non-
driving related tasks and to maintain driving performance is

650 to integrate the warning system into the non-driving related
tasks or design a lockout system. For example, warnings can
be presented to the drivers’ tablets or smartphones on which
they are playing games, reading books, sending/editing emails,
etc. Melcher, Rauh, Diederichs, Widlroither, and Bauer (2015)

655 showed that such a method could overcome the disadvantages
of visual displays and reduce their reaction time to takeover
requests. A lockout is often initiated by the system at the
moment of the takeover request that blocks drivers’ non-
driving related tasks, which are often provided by the vehicle

660 via its infotainment system. Such a lockout is also able to
bring drivers back to the control loop quickly and Wandtner,
Schömig, and Schmidt (2018) found that a task lockout had
significant advantages for reaction times, and was highly
acceptable during the takeover transition period.

665 5.2. Automation capability awareness

In spite of many positively reviewed comments on this topic,
viewers’ major concerns were that human drivers did not know

the boundary of the autonomous vehicles. Example comments
include “Will the car do an emergency stop and lane change? For

670example, someone pulls out in front of you, will the car dodge the
other vehicle or is that not implemented yet? [−0.6322]”, “I wonder
how well it works in foggy or snowy conditions. How well will it
brake on icy roads? Is that all programmed in the software?
Amazing. Things like leaving yourself more room to brake and

675stop… [0.9089]”, “What if one of the censors starts to malfunction
though? [−0.2960]”, “looks good in “ideal” conditions but theres no
way id let a computer control my life in heavy rain or snow/ice
[−0.2144]”, and “It’s so cool that you can actually see the car
learning to an extent the way to drive on a road like that! [0.6581]”.

680Although human drivers will become increasingly out of
the control loop as the automated driving technology devel-
ops, it plays an important role in making the passengers and
drivers aware of the automation capability in order to make
the takeover transition decision correctly and promptly. The

685key for further improvement, therefore, is to help human
drivers better understand the automation system and its
interaction with the dynamic external environment. One
possible improvement is to increase automation transpar-
ency so as to help the driver build a proper level of trust

690during the takeover transition process (Lee & See, 2004).
With increasing levels of automation introduced and built
into autonomous vehicles, the system must clearly indicate
what level of automation is currently engaged so that the
driver knows his/her responsibilities and roles. For example,

695in SAE Level 2 automation, the driver needs to actively
monitor the driving condition while in SAE Level 3 auto-
mation, the system is actively monitoring the driving con-
dition and the driver is allowed to perform non-driving
related tasks. Another way to understand the system bound-

700ary or improve transparency is to offer explanations for
each takeover request. For example, Körber, Prasch, and
Bengler (2018) showed that post-hoc explanations of take-
over requests improved their understanding of the system.
In such a way, the takeover requests can be predictable in

705similar driving situations to those the driver has experi-
enced before. The increased automation transparency (i.e.,
its intent, performance, future plans, and reasoning process)
will then help users develop an accurate mental model of
the automaton and its behavior, which leads to a higher

710level of trust and acceptance.

5.3. Situation awareness

Examining the comments, we found that YouTube viewers were
very concerned about how to quickly bring back human drivers’
attention to the driving task and manage the takeover request

Topic Tesla Volvo Mercedes BMW Audi Honda
Non-driving related tasks -0.010 0.089 0.302 -0.817 0.238 0.827

Automation capability awareness 0.076 0.132 0.258 -0.085 0.301 0.283

Situation awareness -0.073 0.140 -0.083 0.672 -0.083 NA

Warning effectiveness -0.038 0.448 -0.224 -0.296 0.584 0.505

#Sample 859 34 206 14 28 11

Figure 5. Evaluation of comments on different automotive manufacturers.
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715 successfully during the transition period. Example comments
consisted of “I think I prefer to actually pay attention when
I drive” [- 0.1027], “Man … I’m cringing at you folding your
arms. Especially in traffic and on roads like that. There’s a reason
Elon said to have your hands on the wheel” [- 0.3612], and

720 “Despite Elon Musk saying that people should ABSOLUTELY
keep their hands on the wheel, I suspect that a lot of Tesla
Owners will be like this numb nut and take their hands OFF the
wheel. Note to other motorists: AVOID all Teslas on the road.
There might be an idiot behind the wheel, like the one in this

725 video”. [- 0.7338]. In order to successfully take over control from
automation, the driver needs to have a good sense of situation
awareness. Regarding this, many assistive technologies may be
helpful. For example, augmented reality (AR) has been used in
takeover transitions to improve drivers’ situation awareness.

730 Lorenz, Kerschbaum, and Schumann (2014) designed two AR
assistive concepts, i.e., AR green and AR red. The AR green
concept highlighted a passage for users to safely navigate during
the takeover transition period while the AR red one showed
a corridor to be avoided. Their results showed no significant

735 differences between the two concepts in terms of takeover per-
formance, but the AR green concept did help drivers to use the
brake more and take a consistent path to guide them through the
takeover transition period. Another possible way is to offer
environment cues directly to the driver during the takeover

740 transition period. For example, Wright et al. (2017) made use
of auditory-based environment cues to help improve drivers
situation awareness. Among the four types of assistive cues,
i.e., an environment cue (e.g., work zone ahead), a threat cue
(e.g., scan for workers), a combined cue (work zone ahead; scan

745 for workers), and a general cue (take over control), the environ-
ment cue had better takeover performance than others. This was
possibly due to the fact that the environment cue provided the
specific location of the hazard while the combined cue cost extra
time and resources for the driver to process.

750 Due to the capabilities of current autonomous vehicles
(SAE Level 2 to near SAE Level 3), many concerned that
they were not able to monitor the car all the time when
automated driving was engaged. For example, one commen-
ted that “i think we will be super tired from the constant

755 monitoring of the car with the tension that it may screw it
up. It will feel like we are letting a kid drive and have to
constantly watch them” [−0.2023]. In order to make sure
that the driver has enough time to resume situation aware-
ness, one possible way is to monitor drivers’ state using their

760 facial expressions, physiological data, and head orientations.
Such a system is able to tell whether the driver is highly
distracted or actively monitoring the driving situation. While
the driver is highly distracted (by non-driving related tasks),
the system should provide early warnings and give extra time

765 for the driver to prepare, understand, and predict the driving
environment.

5.4. Warning effectiveness

Three important factors are identified in the literature, includ-
ing warning experience, time budget, and alert types. Warning

770 experience refers to how annoyed the alert is when it goes off
at the takeover request. Time budget refers to the lead-time of

the takeover request, or how much time the request should be
provided to the driver ahead of the danger. Alert type involves
the presentations and modalities of the warning, i.e., whether

775it is visual, auditory, tactile, or a combination of them with
various forms of presentations. Unlike the studies in the
literature which emphasized on the latter two important fac-
tors, including time budget and alert type, the YouTube
comments mainly focused on the annoyance caused by the

780warning. Example comments included “It does the beeping
and sh** so if you were to fall asleep it would wake you up,
and you would take control … [−0.03]”, “That’s pretty annoy-
ing. The steer sign coming on a lot” [−0.34], “If you don’t want
to have to touch the steering wheel every 6 seconds, buy

785a Neodriven and install Comma ai OpenPilot on it for free.
I just got one for my Civic w/Sensing and its 100x better at self-
driving than Honda’s system … [0.7165]”, and “The autopilot
alarm keeps telling sounding alerting the driver to the fact that
it doesn’t trust itself (difficulty reading road markings?) so why

790is this driver trusting it?” [−0.4141]. These responses tended to
be consistent with the capabilities of current autonomous
vehicles on the road which required the driver to monitor
the driving constantly. Whenever the driver did not put their
hands on the steering wheel for a certain time, the system may

795warn the driver although it may not necessarily ask the driver
to take over control from automated driving. However, the
warning in the form of visual (e.g., red takeover sign flashing)
and auditory (e.g., beeping) displays tended to be annoying.

First, visual displays seemed not enough and many drivers
800tended to miss visual information while they were engaged in

non-driving related tasks (de Waard, van der Hulst,
Hoedemaeker, & Brookhuis, 1999; Politis, Brewster, &
Pollick, 2015). Therefore, auditory and tactile displays should
also be explored due to their advantages over visual displays

805in that they are gaze-free. Second, for auditory displays,
countdown-based warnings (Politis et al., 2018) with clear
spatial or environmental cues (Wright et al., 2017) are prefer-
able, while tactile displays should be placed in contact with
drivers back in a repeated pattern as human backs tend to be

810more sensitive to vibrations than human hips and thighs and
repeated vibrations are effective than directional ones (Wan &
Wu, 2017). Under critical situations, multiple modalities of
signals should be combined not only to increase the urgency
level to improve drivers’ reaction time but also to provide

815redundancy. Such integration of visual, auditory, and tactile
displays are preferred by a large number of participants
(Bazilinskyy & de Winter, 2015).

Although the comments did not mention much about the
time budget needed to warn the driver at the takeover transi-

820tion period, it is extremely important that enough time is
provided, especially when the driver is engaged in non-
driving related tasks or even falls asleep. Takeover transitions
happen in a relatively short timeframe and thus the lead time
is directly associated with the outcome of the transition. We

825recommend that the takeover lead time should be at least
between 6.5 and 8 seconds (Clark & Feng, 2015; Eriksson &
Stanton, 2017; Gold et al., 2013; Mok et al., 2015 Q10; Mok et al.,
2017; Mok et al., 2015 Q11), which lead to better takeover perfor-
mance, quality, and comfort in various scenarios. Although

830a shorter time budget (e.g., 5 seconds) can result in shorter
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reaction time and shorter takeover time, a longer time budget
tends to facilitate drivers with a higher level of trust and ease
(e.g., Mok et al., 2015Q12 ). From the design perspective, it should
accommodate the 5th to the 95th percentiles of the population

835 as is in anthropometrics and the average lead time would
exclude a large number of drivers (Eriksson & Stanton,
2017). As a summary, providing ample lead time allows
more time to react and using multiple modalities of stimuli
(e.g. visual, auditory, hepatic) increases the driver’s efficiency

840 and effectiveness of processing the alerts.
Finally, we summarized the major design improvement in

Table 3 for the four topics identified in YouTube comments.

6. Limitations and future work

6.1. YouTube comments

845 YouTube is one of the most popular video sharing websites
and videos with autonomous vehicles were also received
a large number of audiences. Despite a large number of
comments on autonomous vehicles and takeover events,
a large portion of the comments were not related to the issues

850 involved in this study (e.g., comments on the video quality
rather than content, funny but irrelevant statements), and
many of them vaguely discussed part of the issues. As seen
from Table 2, over 66% of the data were categorized as others
and thus were not included in the analysis. Therefore,

855 a systematic cleaning and refining process is necessary before
the data can be analyzed. The videos provided were mostly
related to SAE Level 2 to near SAE Level 3 automated driving,
and thus the comments and the issues derived from these
comments tended to target these vehicles. However, by com-

860 paring and contrasting with the studies in the literature, we
aimed to complement each other and proposed design recom-
mendation accordingly.

6.2. Topic mining and sentiment analysis

Although the fastText method used for topic mining of the
865 takeover transition-related comments had over 80% accuracy

in terms of precision and recall. The training set only had 500
samples, which tended to be small. In the future, we plan to

crawl a large number of related comments and manually label
them to better train the models in order to improve the

870accuracy of this model. Moreover, the VADER model is an
unsupervised model and generally performs well for social
media text data. However, it was not created specifically for
the YouTube comments on autonomous vehicles and the
takeover transition-related topics. The model can be tailored

875to such type of comments to further improve its accuracy in
the future. Furthermore, viewers often made different types of
comments on these YouTube videos, such as ideas, concerns,
and requirements related to the takeover events and/or the
vehicles involved. Future work can consider developing

880machine learning models to automatically classify such types
of comments to better understand how we can further
improve the current design of autonomous vehicles.

6.3. Results and design recommendations

We analyzed the issues of currently available autonomous
885vehicles which were mainly SAE Level 2 to near SAE Level 3

automation from the YouTube comments. It should be
cautious to generalize such results to other levels of auto-
mation. However, the design improvements are helpful for
automotive manufacturers in general as the takeover transi-

890tions can happen in SAE Level 3 and Level 4 automated
driving. Compared to the well-controlled lab studies with
structured objectives, such a YouTube study can understand
the general public’s concerns and acceptance towards auton-
omous vehicles in a bigger picture. However, in order to

895have a systematic comparison between the lab studies and
YouTube studies, a thorough literature review is needed in
order to identify those most frequently studied human fac-
tor topics involved in the takeover transition process, which
will further guide us to examine the issues in YouTube

900comments. On the contrary, those in the YouTube com-
ments also can inspire new studies in the lab in the future.

7. Conclusions

In this paper, we identified four major human factors topics
from YouTube videos and their comments of takeover events

Table 3. Major design improvements suggested for the four identified human factor topics.

Human Factor Topics Major Suggested Design Improvements

Non-driving related tasks (1) Clarification and regulations about what types of non-driving related tasks are allowed and not allowed in the vehicle

(2) A lockout system that blocks drivers’ non-driving related tasks

Automation capability
awareness

(1) Increase automation transparency to help the driver build a proper level of trust (e.g., indicating the current level of
automation)

(2) Offer explanations for each takeover request

Situation awareness (1) Offer assistive technologies (e.g., AR and directional warning)
(2) Provide a driver monitoring system to tell when drivers are distracted

Warning effectiveness (1) Combine visual warning with other types of warning (e.g., auditory and vibrotactile displays)
(2) Combine multiple modalities of warning to indicate warning urgency
(3) Provide takeover lead time at least between 6.5 and 8 seconds
(4) Accommodate the 5th to the 95th percentiles of the population in design warning displays
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905 in commercially available autonomous vehicles, including 1)
non-driving related tasks, automation capability awareness,
situation awareness, and warning effectiveness. We then
investigated viewers’ positive and negative opinions on each
topic using topic mining and sentiment analysis. We found

910 that YouTube viewers commented on automation capability
awareness the most among the four topics, and had similar
numbers of positive, neutral, and negative comments on other
topics. Furthermore, viewers went to two extremes in terms of
sentiment intensity scores of non-driving related tasks

915 involved in automated driving, compared with other topics.
By identifying the differences between the comments on the
collected YouTube videos and experiment studies in the lit-
erature, we finally suggested possible design recommenda-
tions in order to improve takeover performance of

920 automated driving.
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