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Workload management is of critical concern in teleoperation of unmanned vehicles, because high workload
can lead to sub-optimal task performance and can harm human operators’ long-termwell-being. In the present
study, we conducted a human-in-the-loop experiment, where the human operator teleoperated a simulated
HighMobility MultipurposeWheeled Vehicle (HMMWV) and performed a secondary visual search task. We
measured participants’ gaze trajectory and pupil size, based on which their workload level was estimated. We
proposed and tested a Bayesian inference (BI) model for assessing workload in real time. Results show that
the BI model can achieve an encouraging 0.69 F1 score, 0.70 precision, and 0.69 recall.

INTRODUCTION
Teleoperation has been used in a wide variety of applica-

tions, such as urban search and rescue (USAR) and border patrol
(Burke et al., 2004; Girard et al., 2004). Teleoperation allows
human operators to access difficult or hazardous areas. How-
ever, it can impose high workload on the operator, leading to
sub-optimal task performance and even task failures (Lu et al.,
2019).

Workload can be measured offline or online. Offline retro-
spective measures are used after a human operator completes a
task, usually via a questionnaire. In contrast, online real-time
measures of workload are assessed while the operator is per-
forming the task and therefore could be used in the design of
adaptive automation. Both performance measures and physi-
ological measures can provide online assessment of workload.
For performance measures, a variety of secondary tasks have
been employed, such as the mental arithmetic and the auditory
n-back memory task. However, performance measures are not
applicable if the secondary task performance is ambiguous or
is not available immediately. Physiological measures rely on
changes in human physiological signals. Common measures in-
clude heart rate related measures (Backs et al., 2003), electroen-
cephalogram (EEG) (Liu et al., 2017b), eye-related measures
(Lu et al., 2019; Di Nocera et al., 2007), Galvanic Skin Response
(GSR) (Xu, 2014) and near infrared spectroscopy (NIRS) (Liu
et al., 2017b; Ayaz et al., 2012).

Among all the physiological measures, some could be intru-
sive and the some could be easily affected by body movements
(Chen et al., 2015). Therefore, with the development of ad-
vanced eye-tracking technology, research effort has been spent
on using eye-related measurements to assess operators’ work-
load, including pupil diameter (Recarte and Nunes, 2003), gaze
distribution (Reimer, 2009) , gaze trajectory (Wang et al., 2014;
Fridman et al., 2018), blink rate (Coral, 2016) and so on.

To assess workload online using physiological data, previous
studies largely adopted statistical methods to show the relation-
ships between certain physiological signals and workload. Re-
cently, researchers started to apply machine learning techniques
to classify mental workload into different levels. Using a deci-
sion tree, Zhang et al. (2004) classified drivers’ workload into 2
levels by analyzing a 30-second time window of the pupil diam-
eter and driving data. Solovey et al. (2014) examined the impact
of the size of the time window (10, 15, 20, 25, and 30 seconds)
on workload estimation accuracy and found that the accuracy
tends to increase with increased window size. A recent work of
Fridman et al. (2018) proposed a deep neural network to ana-
lyze a 6-second window of eye videos and classified operators’
workload into 3 categories. In the present study, we developed
a new method, which required only 4-second physiological data
as input. With this method, we obtained an encouraging result
and were able to assess the operator’s workload in nearly real
time.

In addition, Solovey et al. (2014) compared different classi-
fication algorithms including Decision Tree, Logistic Regres-
sion, Multilayer Perceptron, Naive Bayes, and Nearest Neigh-
bor. They found that no one algorithm fits all - certain algo-
rithms provide higher estimation accuracy when analyzing cer-
tain physiological measurements. Compared to previous work,
which used a single computational model for analyzing a single
type (Fridman et al., 2018; Chen and Epps, 2013) or multiple
types of physiological measurements (Hogervorst et al., 2014),
the present study focused on how to leverage different computa-
tional models for different types of physiological measurements.
We measured human operators’ gaze points and pupil sizes and
put forward a Bayesian inference model for assessing operators’
workload.

Our main contributions are:

• We proposed a Bayesian inference model that leverages



Figure 1: Experiment setup. Front screen is for driving task.
Side screen is for visual search task.

different computational models for different types of phys-
iological measurements, namely, Hidden Markov Model
(HMM) for analyzing gaze trajectory and Support Vector
Machine (SVM) for pupil size.

• Our proposed model can estimate human operators’ work-
load based on data from a 4-second time window.

METHOD
Participants

A total of 20 students participated in the experiment. Data
of 8 participants were discarded due to equipment malfunction.
The remaining 12 participants were on average 22.7 years old
(SD = 2.6) and had an average of 4.5 years of driving experience
(SD = 2.2). All participants had normal or corrected-to-normal
vision.

Simulation Testbed

In the experiment, participants were asked to teleoperate
a simulated High Mobility Multipurpose Wheeled Vehicle
(HMMWV) and to perform a secondary visual search task (See
Figure 1). The HMMWV has a high center of gravity, making
it difficult to turn the vehicle. In the teleoperation task, the par-
ticipants interacted with an autonomous navigation algorithm in
shared-control mode via a Logitech G29 driving force racing
wheel. The autonomy only performed lane keeping at a fixed
driving speed of 10m/s (around 22mph). Each participant drove
on four different tracks, each with a length of 1000 m. There
were 6 obstacles along each track. The participants were asked
to drive the HMMWV as close to the center lane as possible
with the aid of the autonomy while avoiding the obstacles by
themselves.

In the visual search task, the participants received image feeds
and were asked to identify potential threats in the images (See
Figure 2). The participants were informed that the image feeds
may contain potential threats and they should report to their
commander as soon as possible once they spotted the potential
threats. Participants reported "danger" by clicking the red pedal
at the back of the steering wheel. Otherwise, the participant
reported "clear" by clicking the green pedal. As the steering

Figure 2: Illustration of the visual search task (left). The par-
ticipant is shown four images at a time and is required to detect
potential threats. Illustration of a potential threat (right).

wheel can only rotate from -90 degree to 90 degree, the partici-
pant would not need to cross their hands and could always keep
the hands on the steering wheel. The potential threat will appear
in only one of the four images. The visual search task utilized
a combined pace design: If the participant responded within 8
seconds, there would be a gap until the display of the next set
of four images; if the participant responded after 8 seconds, the
next set of images would be displayed immediately. There was
an auditory alert every 3 seconds to remind the participant of
the secondary task. Figure 3 illustrates the design of the visual
search task, where Rt denotes the human operator’s response
time, At = 3 s is the alert time, a = 8 s is a parameter that limits
the participant’s pace on the visual search task and Wt is the gap
between the display of the current set of images and the display
of the next set of images. We define Wt =max (a−Rt,0). Thus
if the human operator’s response time Rt is smaller than a = 8
s, a blank image will be shown for a−Rt seconds; if the human
operator’s response time Rt is larger than a = 8 s, the next set of
images will appear immediately.

The autonomy used in this project implemented the nonlinear
model predictive control approach (NMPC) (Febbo et al., 2017;
Liu et al., 2017a). It leverages a 3 degrees-of-freedom vehicle
model for its embedded model. It receives the vehicle’s state
information such as position, lateral speed, steering angle, yaw
angle and yaw rate as inputs, and outputs the steering angle
series for the vehicle as a result of minimizing a cost function.
The cost function comprises three different terms: deviation
from the center line of the track, a penalty on vehicle tire lift-off,
and steering effort regularization. Also, constraints are imposed
to ensure that the vehicle is operated within its dynamic limits.
By optimizing this cost function, the autonomy can achieve
a solution that minimizes the deviation from the center line
with least control effort while ensuring the vehicle does not
experience tire-lift off. The update rate for the autonomy is less
than 500 ms, which is considered as a real-time update rate.

Experimental Design

The experiment used a within-subject design. Each partic-
ipant drove on four different tracks, each with 1000 m length.
There were six different obstacles on the track, with varying



Figure 3: Illustration of the design of the secondary visual search task.

obstacle sizes (1-, 3-, 5-meter diameter) and visible distances
(25- and 80-meter). The visible distance indicates how far away
the participant can see the obstacle. As the vehicle’s speed is
10 m/s, participants had 2.5 s or 8 s to perform the obstacle
avoidance. The presentation order of the 6 obstacles followed a
6×6 Latin square to eliminate potential order effects.

Procedure

The participants provided informed consent and filled in a
demographic survey prior to the experiment. The participants’
baseline pupil sizes were then collected by asking them to look at
a white wall twice, each for 30 seconds. Four training trials were
provided to them before the real experiment: (1) driving on a
track without obstacles; (2) driving on a track with obstacles; (3)
performing the secondary visual search task; (4) performing the
primary and the secondary tasks on a track with obstacles. The
participants were asked to report the perceived difficulty after
avoiding each obstacle during the training and real experiment.
A debriefing survey was taken at the end of the experiment.

During the experiment, the participants wore the Tobii Pro
Glasses 2 to gather their eye-related data, i.e. gaze points and
pupil sizes.

Preparation of Data

During the experiment, the participants’ gaze points, pupil
sizes and perceived difficulty of each obstacle were collected.
The results revealed a significant effect of visible distance on
perceived difficulty (F(1,11) = 101.928, p < .001). Therefore
we considered the event of avoiding obstacles with a 25-meter
visible distance as imposing high workload on human opera-
tors and the event of avoiding obstacles with a 80-meter visible
distance as imposing low workload. The sampling rate for the
Tobii Pro Glasses 2 is 50 Hz. In the case of data dropout, we
re-sampled the data to 50 Hz sampling rate. We used data of 4
seconds in the middle of each obstacle avoidance event and had
288 data points (12 participants × 4 tracks × 6 obstacles).

WORKLOAD INFERENCE
In this section, we first discuss how to use HMM and SVM to

classify workload into different levels (high and low workload

in our experiment). Then we introduce our proposed Bayesian
inference method to leverage these two models.

HMM for Gaze Trajectory

Hidden Markov model (HMM) has been used to model gaze
trajectory to estimate workload (Fridman et al., 2018). Let
XH = {x1

H, x
2
H, ..., x

T
H } represent a gaze trajectory captured from

the eye tracker, where xtH represents the gaze point (location
of where the human is looking at relative to the external world
coordinate) at time t.

HMM contains a set of hidden states y, observations x, obser-
vation model p(x |y) and state transition probabilities p(yi |yj).
To model the gaze trajectory using HMM, we defined the hidden
states as centers of the gaze points and the observation model is
a multivariate normal distribution over the centers. The number
of hidden states was determined by Bayesian Information Cri-
terion (BIC) (Calinon and Billard, 2005; Schwarz et al., 1978).
We trained two HMMs, one for the high workload and one for
the lowworkload. The parameters of HMMswere learned by the
Expectation Maximization algorithm. We used the open source
implementations from Rozo et al. (2016); Calinon (2016).

Given a gaze trajectory XH , we computed the likelihood
p(XH |H) via the forward algorithm, where H represented differ-
ent HMMs for the high workload and lowworkload. To estimate
the workload of XH , we found the HMM with the maximum
likelihood, i.e. argmax

H
p(XH |H).

SVM for Pupil Size Changes

Support-vector machine (SVM) has been used to classify hu-
man operators’ workload using the changes of the pupil size as
features (Hogervorst et al., 2014). SVM is a supervised learning
algorithm that aims to find the optimal hyperplane that sepa-
rates data points into different clusters. Wu et al. (2004) showed
how to estimate probabilities for multi-class classification by
pairwise coupling, i.e. given a data point XS , the proposed al-
gorithm can estimate p(S |XS), where S is a different class label.
We used the LIBSVM package (Chang and Lin, 2011) in our
implementations.

Given a sequence of pupil sizes D = {D1, ...,DT }, we first
computed the change of the pupil size D̂ based on each partici-
pant’s baseline pupil size DB as D̂ = {Di−DB |i = 1, ...,T}. Sim-



Figure 4: Bayesian inferencemodel to combineHMMandSVM.

ilar to Solovey et al. (2014), we used a 0.4-second time window
(20 time steps) and a 0.2-second overlap (10 time steps) to extract
the feature vector from D̂ as XS = {

∑20
i=1 D̂t+i

20 |t = 0,10,20, ...}. To
estimate the workload of XS , we found the S that maximized the
posteriori, i.e. argmax

S
p(S |XS). We used the linear kernel SVM

and regularization parameter C = 1 in this paper.

Bayesian Inference

In order to combine theHMMand SVMmodels, we employed
a Bayesian inference approach. Figure 4 shows the proposed
probabilistic graphical model for the Bayesian inference, where
WL is the human’s workload, S is the workload estimation by
SVM, H is the workload estimation by HMM, XS is the feature
vector of the pupil size changes, XH is the gaze trajectory. The
shaded circles represent the observed data and other circles rep-
resent the hidden states. The maximum posteriori estimation
of workload is to compute argmax

WL

p(WL |XH,XS). Given the

probabilistic graphical model, we had the following equations
based on the Bayes’ rule and the law of total probability:

p(WL |XH,XS)
∝ p(XH,XS |WL)p(WL)
= p(WL)

∑
H,S

p(XH,XS,H,S |WL)

∝ p(WL)
∑
H,S

p(H |WL)p(S |WL)p(XH |H) p(S |XS )
p(S)

(1)

where p(WL) is the prior of the human operators’ workload
(0.5 for both high and low workload in our case), p(H |WL),
p(S |WL) are the prior knowledge of how the HMM and SVM
model works independently (we use empirical results of HMM
and SVM performance to approximate), p(XH |H), p(S |XS) are
the likelihood and posteriori output of HMM and SVM, and
p(S) is the prior knowledge of SVM (we use empirical results of
SVM to approximate). As p(XH |H) is the probability density
of the gaze trajectory, the longer the trajectory is, the smaller
this value is. In order to eliminate the influence of the length
of the trajectory, one can use geometric mean of the probability
density of a trajectory (Luo et al., 2018). Thus we used the
following equation to estimate the human’s workload, where N
is the length of the gaze trajectory (200 in our experiment).

argmax
WL

p(WL)
∑
H,S

p(H |WL)p(S |WL) N
√

p(XH |H)
p(S |XS)

p(S) (2)

RESULTS AND DISCUSSION
Due to the small dataset (12 participants), we used the holdout

method (Kim, 2009) for cross-validation for testing the perfor-

Table 1: Performance of HMM, SVM and Bayesian Inference

HMM SVM BI
F1 0.655±0.008 0.581±0.005 0.693±0.009
Precision 0.660±0.009 0.583±0.005 0.699±0.009
Recall 0.650±0.008 0.578±0.005 0.687±0.008

Table 2: Statistical analysis results of model comparison

BI vs HMM BI vs SVM
F1 t(1,99) = 6.89, p < .001 t(1,99) = 10.54, p < .001
Precision t(1,99) = 6.081, p < .001 t(1,99) = 10.75, p < .001
Recall t(1,99) = 6.826, p < .001 t(1,99) = 10.19, p < .001

mance of our proposed method. In each run of the holdout, we
randomly selected data of 3 participants as the testing dataset
and data of the remaining 9 participants as the training dataset.
To find the best number of hidden states, we varied the number
of hidden states from 2 to 10 for HMM and ran 100 holdouts
for each number of hidden states. The results indicate that 4
was the best number of hidden states. We ran 100 holdouts for
HMM and SVM in order to compute the prior knowledge of
their performance (p(H |WL), p(S |WL), p(S)).
We then ran another 100 holdouts to combine our proposed

Bayesian inference model and the baseline HMM and SVM
models. Precision, recall and F1 score were used as performance
metrics. Precision is the number of true positives divided by the
number of true positives + false positives. Recall is the number
of true positives divided by the number of true positives + false
negatives. For our multi-classification problem, the precision
is the mean precision of all classes and the recall is the mean
recall of all classes. F1 = 2 ·precision · recall/(precision+recall).
Table 1 shows the mean and standard error of each performance
metric for different methods. The results show that the proposed
model achieved a 0.69 F1 score, 0.70 precision and 0.69 recall.
Table 2 shows the pairwise t-test comparing the three models.
The results indicate that our proposed Bayesian inference model
had better prediction than either the HMM or the SVM model
alone.

CONCLUSION
Workload management is critical for teleoperation tasks, as

high workload would lead to sub-optimal task performance and
even task failures (Lu et al., 2019). Various computational
models have been developed to estimate human’s workload by
analyzing different types of physiological signals (Hogervorst
et al., 2014).

In this paper, we proposed a Bayesian inference model lever-
aging different computational models for different types of phys-
iological signals, i.e. HMM for gaze trajectory and SVM for
changes of pupil size. Experimental results showed that our pro-
posed method estimated human’s workload using only 4-second
physiological data and achieved 0.69 F1 score, 0.70 precision
and 0.69 recall.

Our results should be viewed in light of the several limita-
tions. First, pupil dilation is sensitive to ambient light levels. As



our experiment is conducted in a controlled environment with
constant ambient light, it is unclear if our algorithm will be gen-
eralized to environments with varying ambient light. Second,
we did not compare our algorithm with other baseline methods
such as Fridman et al. (2018).

In our future work, we aim to reduce the time window for
workload estimation and combine other computational mod-
els for other physiological signals such as heart rate variability
(HRV) in order to achieve more accurate workload estimation
performance in real-time. Wewill also incorporate ourworkload
estimation in the design of an adaptive shared-control autonomy.

Acknowledgement
Weacknowledge the technical and financial support of theAu-

tomotive Research Center (ARC) in accordance with Coopera-
tive Agreement W56HZV-14-2-0001 U.S. Army Tank Automo-
tiveResearch, Development and EngineeringCenter (TARDEC)
Warren, MI.

REFERENCES
Ayaz, H., Shewokis, P. A., Bunce, S., Izzetoglu, K., Willems, B., and

Onaral, B. (2012). Optical brain monitoring for operator training
and mental workload assessment. Neuroimage, 59(1):36–47.

Backs, R. W., Lenneman, J. K., Wetzel, J. M., and Green, P. (2003).
Cardiac measures of driver workload during simulated driving with
and without visual occlusion. Human Factors, 45(4):525–538.

Burke, J. L., Murphy, R. R., Coovert, M. D., and Riddle, D. L. (2004).
A field study of human–robot interaction in the context of an urban
search and rescue disaster response training exercise.

Calinon, S. (2016). A tutorial on task-parameterizedmovement learning
and retrieval. Intelligent Service Robotics, 9(1):1–29.

Calinon, S. and Billard, A. (2005). Recognition and reproduction of
gestures using a probabilistic framework combining pca, ica and
hmm. In Proceedings of the 22nd international conference on Ma-
chine learning, pages 105–112. ACM.

Chang, C.-C. and Lin, C.-J. (2011). Libsvm: A library for support
vector machines. ACM transactions on intelligent systems and tech-
nology (TIST), 2(3):27.

Chen, S. and Epps, J. (2013). Automatic classification of eye activity for
cognitive load measurement with emotion interference. Computer
methods and programs in biomedicine, 110(2):111–124.

Chen, W., Jaques, N., Taylor, S., Sano, A., Fedor, S., and Picard, R. W.
(2015). Wavelet-based motion artifact removal for electrodermal
activity. In 2015 37th Annual International Conference of the IEEE
Engineering in Medicine and Biology Society (EMBC), pages 6223–
6226. IEEE.

Coral, M. P. (2016). Analyzing cognitive workload through eye-related
measurements: A meta-analysis.

Di Nocera, F., Camilli, M., and Terenzi, M. (2007). A random glance
at the flight deck: Pilots’ scanning strategies and the real-time as-
sessment of mental workload. Journal of Cognitive Engineering and
Decision Making, 1(3):271–285.

Febbo, H., Liu, J., Jayakumar, P., Stein, J. L., and Ersal, T. (2017).
Moving obstacle avoidance for large, high-speed autonomous ground
vehicles. In 2017 American Control Conference (ACC), pages 5568–
5573. IEEE.

Fridman, L., Reimer, B., Mehler, B., and Freeman, W. T. (2018).
Cognitive load estimation in the wild. In Proceedings of the 2018

CHIConference onHuman Factors in Computing Systems, page 652.
ACM.

Girard, A. R., Howell, A. S., and Hedrick, J. K. (2004). Border patrol
and surveillance missions using multiple unmanned air vehicles. In
2004 43rd IEEE Conference on Decision and Control (CDC)(IEEE
Cat. No. 04CH37601), volume 1, pages 620–625. IEEE.

Hogervorst, M. A., Brouwer, A.-M., and Van Erp, J. B. (2014). Com-
bining and comparing eeg, peripheral physiology and eye-related
measures for the assessment of mental workload. Frontiers in neu-
roscience, 8:322.

Kim, J.-H. (2009). Estimating classification error rate: Repeated cross-
validation, repeated hold-out and bootstrap. Computational statistics
& data analysis, 53(11):3735–3745.

Liu, J., Jayakumar, P., Stein, J. L., and Ersal, T. (2017a). Combined
speed and steering control in high speed autonomous ground vehi-
cles for obstacle avoidance using model predictive control. IEEE
Transactions on Vehicular Technology, 66(10):8746–8763.

Liu, Y., Ayaz, H., and Shewokis, P. A. (2017b). Multisubject “learning”
for mental workload classification using concurrent eeg, fnirs, and
physiological measures. Frontiers in human neuroscience, 11:389.

Lu, S., Zhang, M. Y., Ersal, T., and Yang, X. J. (2019). Workload
management in teleoperation of unmanned ground vehicles: Effects
of a delay compensation aid on human operators’ workload and tele-
operation performance. International Journal of Human–Computer
Interaction, pages 1–11.

Luo, R., Hayne, R., and Berenson, D. (2018). Unsupervised early pre-
diction of human reaching for human–robot collaboration in shared
workspaces. Autonomous Robots, 42(3):631–648.

Recarte, M. A. and Nunes, L. M. (2003). Mental workload while driv-
ing: effects on visual search, discrimination, and decision making.
Journal of experimental psychology: Applied, 9(2):119.

Reimer, B. (2009). Impact of cognitive task complexity on drivers’
visual tunneling. Transportation Research Record, 2138(1):13–19.

Rozo, L., Silverio, J., Calinon, S., and Caldwell, D. G. (2016). Learn-
ing controllers for reactive and proactive behaviors in human–robot
collaboration. Frontiers in Robotics and AI, 3:30.

Schwarz, G. et al. (1978). Estimating the dimension of a model. The
annals of statistics.

Solovey, E. T., Zec, M., Garcia Perez, E. A., Reimer, B., and Mehler, B.
(2014). Classifying driver workload using physiological and driving
performance data: two field studies. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 4057–
4066. ACM.

Wang, Y., Reimer, B., Dobres, J., andMehler, B. (2014). The sensitivity
of different methodologies for characterizing drivers’ gaze concen-
tration under increased cognitive demand. Transportation research
part F: traffic psychology and behaviour, 26:227–237.

Wu, T.-F., Lin, C.-J., and Weng, R. C. (2004). Probability estimates for
multi-class classification by pairwise coupling. Journal of Machine
Learning Research, 5(Aug):975–1005.

Xu, X. (2014). Analysis on mental stress/workload using heart rate
variability and galvanic skin response during design process. PhD
thesis, Concordia University.

Zhang, Y., Owechko, Y., and Zhang, J. (2004). Driver cognitive work-
load estimation: A data-driven perspective. In Proceedings. The 7th
International IEEE Conference on Intelligent Transportation Sys-
tems (IEEE Cat. No. 04TH8749), pages 642–647. IEEE.


	INTRODUCTION
	METHOD
	Participants
	Simulation Testbed
	Experimental Design
	Procedure
	Preparation of Data

	WORKLOAD INFERENCE
	HMM for Gaze Trajectory
	SVM for Pupil Size Changes
	Bayesian Inference

	RESULTS AND DISCUSSION
	CONCLUSION
	Acknowledgement
	REFERENCES

