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Abstract
In conditionally automated driving, drivers decoupled from
operational control of the vehicle have difficulty taking over
control when requested. To address this challenge, we con-
ducted a human-in-the-loop experiment wherein the drivers
needed to take over control from an automated vehicle. We
collected drivers’ physiological data and data from the driv-
ing environment, and based on which developed random
forest models for predicting drivers’ takeover performance in
real time. Drivers’ subjective ratings of their takeover perfor-
mance were treated as the ground truth. The best random
forest model had an accuracy of 70.2% and an F1-score of
70.1%. We also discussed the implications on the design of
an adaptive in-vehicle alert system.
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Introduction
According to the Society of Automotive Engineers [23], driv-
ing automation ranges from L0 (no automation) to L5 (full



automation). Automated driving features at SAE Level 3,
such as the Audi A8’s Traffic Jam Pilot, are expected to be
introduced into the market in 2020. With SAE Level 3 con-
ditional automation, drivers serve as a fallback for the au-
tomation but are no longer required to actively monitor the
driving environment and can engage in non-driving-related
tasks (NDRTs). The concern from a safety perspective is
that the limited driver-vehicle interaction puts drivers out-of-
the-loop and increases the difficulty for drivers to take over
control of the vehicle when the automated vehicle reaches
its operational limits [2, 10, 11, 19, 27].

In order to resolve such difficulty, a substantial amount of
research has been conducted on the factors that influ-
ence drivers’ takeover performance, including the driving
environment [11, 15], types of NDRTs [9, 24, 26], and indi-
vidual characteristics [7, 12, 26]. However, these studies
emphasize on the high-level relationships between cer-
tain factors and takeover performance (e.g., elderly drivers
have more difficulty in takeover transitions compared to
younger drivers). It is still difficult to predict whether a par-
ticular driver is able to takeover successfully at a particular
event. Therefore, computational models that are capable
of predicting drivers’ takeover performance in real time are
needed.

The advances in eye tracking and wearable sensors tech-
nology make it convenient to collect drivers’ physiological
signals to reflect drivers’ states and interactions with en-
vironments. To our knowledge, only one study has used
machine learning to predict takeover performance using
drivers’ gaze behaviors and situation complexity [4]. In con-
trast to [4], our study aimed to predict drivers’ takeover
performance when they are engaged in the same type of
NDRT with different levels of cognitive load.

In this paper, we conducted a human-subject experiment
wherein drivers experienced various takeover scenarios in a
high-fidelity driving simulator. We collected drivers’ galvanic
skin response (GSR), heart rate (HR), and eye movements
were recorded for model development as they have been
used as valid tools to assess drivers’ cognitive states and
situational awareness of the driving environments [16, 21,
25]. Using drivers’ physiological data and environment pa-
rameters, we developed random forest models that were
able to predict drivers’ takeover performance with the accu-
racy and F1-score both over 70%. The model can be used
to guide the design of an adaptive in-vehicle alert system to
improve takeover performance in conditionally automated
driving.

Method
Participants
A total of 102 university students participated in the study
(mean age = 22.9; SD = 3.8; range = 18-38; 40 females;
62 males). All the participants had normal or corrected-to-
normal vision and a valid driver’s license.

Apparatus and stimuli
The study was conducted in a fixed-based driving simula-
tor from Realtime Technologies Inc. (RTI, Michigan). The
virtual world was projected on three front screens (16 feet
away), one rear screen (12 feet away), and two side mirror
displays (Figure 1).

This simulator was equipped with the SmartEye four-camera
eye-tracking system (Smart Eye, Sweden) (Figure 2). The
sampling rate of the eye-tracking system is 120 Hz. The
Shimmer3 GSR+ unit (Shimmer, MA, USA) including GSR
electrodes and PPG probes was used to collect GSR and
HR data with a sampling rate of 128 Hz (Figure 3). The
iMotions software (iMotions, MA, USA) was used for physi-



ological data synchronization and visualization in real-time
(Figure 4).

Figure 1: Driving simulator

Figure 2: SmartEye eye-tracking

Figure 3: Shimmer3 GSR+ unit

Figure 4: iMotions software

The simulated vehicle was controlled by a steering wheel
and pedal system embedded in a Nisan Versa car model.
The vehicle was programmed to simulate an SAE Level
3 automation. Participants could press the button on the
steering wheel to activate the automated mode. Once the
AV reached its performance limit, an auditory TOR (“Takeover”)
was issued, and the automated mode would be deactivated
simultaneously for drivers to take over control of the vehicle.

The NDRT was a visual N-back memory task, adapted from
the study of [13]. A series of stimuli were presented for 500
ms each in sequence with a 2500 ms interval. Participants
were required to press the “Hit” button when the current
stimulus was the same as the one presented N steps back
in the sequence and press the “Reject” button otherwise.
The task was running on an 11.6-inch touch screen tablet
mounted in the vehicle (Figure 6).

Experimental design
The study employed a within-subjects design with the driver’s
cognitive load, traffic density, and TOR lead time as inde-
pendent variables. The cognitive load was manipulated via
the difficulty of the NDRTs (low: 1-back memory task; high:
2-back memory task). The heavy and light traffic conditions
had 15 and 0 oncoming vehicles per kilometer respectively
[11]. The TOR lead time was 4 or 7 seconds [10]. Based
on prior literature [14, 17, 18, 22], eight takeover events
were designed in urban and rural drives with typical road-
way features: 1) bicyclists ahead; 2) construction zone on
the left; 3) construction zone ahead; 4) sensor error on the
right curve; 5) swerving vehicle ahead; 6) no lane mark-
ings; 7) sensor error on the left curve; 8) police vehicle on
shoulder. The order of cognitive load, traffic density and
TOR lead time was counterbalanced via an 8 × 8 balanced

Latin Square across participants. Considering standard pro-
gramming practices for the simulator, the order of scenario
presentations was counterbalanced by having half of the
participants drive from Event 1 to 8, and the other half from
Event 8 to 1.

Experimental procedure
After participants signed an informed consent form and
completed an online demographics questionnaire, they
were fitted with the eye-tracker and two GSR electrodes
on left foot and the PPG probe on the left ear lobe.

Participants had a 2-minute practice for the N-back mem-
ory task and a 5-minute practice drive to get familiar with
the simulator environment. Next, each participant drove two
experimental drives (15-20 minutes each), each containing
four takeover events. At the beginning of the drive, partic-
ipants were asked to activate the AV mode and then start
the N-back task when the audio command “Please start the
NDRT” was issued. Participants were informed that they
would get additional 20 dollars if their NDRT performance
was ranked top 10. After performing the NDRT for about
90-seconds, a TOR was issued unexpectedly, and partici-
pants were required to terminate the NDRT manually and
take over control immediately. Participants were allowed
to re-active the AV mode once they thought they had com-
pleted the takeover. After each takeover event, participants
reported their takeover performance for that takeover event
using a visual analogue scale on the tablet, with 0 indicating
not good at all and 100 indicating very good (Figure 5).

Takeover performance prediction
Generation of features and ground truth
We used continuous decomposition analysis (CDA) to de-
compose the GSR signal into phasic and tonic components
respectively [3]. After data pre-processing, we aggregated



Figure 5: Procedure

the values of physiological data within a sliding ‘time win-
dow’ in order to fit time series data into the supervised
learning framework [1]. The window size ranged from 1
to 40 seconds right before a TOR and the generated fea-
tures were listed in Table 1. Model inputs included data on
gaze behaviors, galvanic skin response, and heart rate, as
well as traffic density and TOR lead time. In order to alle-
viate the individual differences, we normalized the feature
values across participants via the min-max normalization
approach. The subjective performance ratings were divided
into two groups using the cut-off score median and were
treated as the ground truth labels.

Figure 6: N-back task in simulator

Random Forest
We used random forest models to predict drivers’ takeover
performance for the following reasons. First, the relation-
ships between drivers’ states, environments and takeover
performance may be more complex than linear. Previous
research has shown that random forest models generally
outperform simple decision trees and boosted tree models
[8]. Second, as an ensemble of binary decision trees for
classification, random forests are robust for new data gen-
eralization and against training data overfitting [20]. Third,
the random forest can produce feature importance, which
increases the model interpretability.

Table 1: Descriptions of generated features

Feature Explanations
HR indices Mean, min, max and standard deviation of

heart rate, inter-beat interval
GSR indices Mean, max and standard deviation of GSR in

phasic component
GSR peak The number of GSR peaks and peak rise time
Fixation Fixation number/duration in different area of

interests (AOIs) (e.g., roads)
Saccade Saccade number in AOIs (e.g., roads)
Pupil Pupil diameter in AOIs (e.g., roads)
Blink The number of blinks
Gaze disper-

sion
Standard deviation of the values for gaze

angle (in radians) from eye point
Eyes-on-the-

road
The proportion of time that participants’ gazes

are on the road
Scan pattern Eye transition patterns among different AOIs
Traffic density Low or high oncoming traffic
TOR lead time How early the vehicle issued TOR

We implemented two important techniques for model de-
velopment via random forest algorithms: the bagging tech-
nique and a random sample of predictors for decision splits
[6]. Bagging fits an algorithm on a set of bootstrapping
samples, i.e., randomly selects many sets of samples with
replacement from the training data. Classification in a bag-
ging algorithm is based on a majority vote among the trees
[5]. Each tree in the ensemble takes a random set of pre-
dictors at each node without replacement so that any two
trees had weak or no correlations between them. In this
research, we set this number as the square root of the num-
ber of predictors.

Among all the data, about 36.8 % of the total data forms
the out-of-bag (OOB) samples. By permuting the out-of-
bag data randomly across one predictor at a time and by
measuring how much this permutation reduces the accu-



racy of the model, we can get estimates of the feature im-
portance in Matlab 2018b (MathWorks, MA). With 10-fold
cross-validation, three sets of the hyper parameters were
tuned for model training: the number of trees, minimum leaf
size, and threshold for feature subsets.

In a binary classification problem, there are four possible
outcomes: true positive (TP), false positive (FP), true neg-
ative (TN), and false negative (FN). In this paper, we used
the traditional classification evaluation indicators Precision,
Recall, Accuracy and F1-Score to carry out the evalua-
tion of the experiment, which were defined as: Precision =

TP
TP + FP , Recall = TP

TP + FN , Accuracy = TP + TN
TP + FP +TN + FN ,

F1-score = 2×Precision ×Recall
Precision + Recall .

Results
Effect of Window Size
Using the median of the subjective ratings as the cut-off
score, we classified takeover performance into two classes:
good and bad. 34 physiological predictor variables and 2
environment variables were included as features in the ran-
dom forest model. Due to system malfunctions, only 684
data points were left for model development. Generally, as
shown in Figure 7, the predictive accuracy and F1-score
increased while the time window increased.

The best model performance was achieved when the time
window was 36 seconds. The best model accuracy and
F1-score were 70.2% and 70.1% through 10-fold cross-
validation (tuned hyper parameters: the number of trees -
200; minimum leaf size - 8; feature importance threshold
- .18). Considering the difficulty in accessing a large time
window in reality, a 18s time window was selected to predict
drivers’ subjective takeover performance in real-time. Fig-
ure 8 shows the confusion matrix with the 18s time window,
and model accuracy and F1-score were both 67.4% (tuned

Figure 7: Accuracy/F1 scores with different time windows

Figure 8: Confusion matrix when the time window is 18s

hyper parameters: the number of trees - 250; minimum leaf
size - 3; feature importance threshold - .18).

Effect of the subset of features
Figure 9 illustrates the out-of-bag estimates of feature im-
portance of the 36 predictor variables when time window
is 18s. Varying the threshold to include different sets of
predictor variables, we found that the model had the high-
est accuracy and F1-score both at 67.4% when we only
included the top 13 features with feature importance thresh-
old at .18 (i.e. mean of heart rate and inter-beat-interval;



Figure 9: Feature importance when time window was 18s (the red
line indicates the feature importance threshold .18)

maximum of heart rate and inter-beat interval; standard de-
viation of inter-beat interval; maximum GSR; the number of
GSR peaks and blinks; mean of pupil diameter in general
and in NDRT specifically; vertical gaze dispersion; eyes-on-
the-road percentage, and the probability that drivers tran-
sited eyes to driving scenes when they looked at NDRT).

However, if we included all sets of features, the model had
accuracy and F1-score both at 64.9%. When feature im-
portance threshold was 0.42, only vertical gaze dispersion,
mean of heart rate and maximum inter-beat interval were
included in the model. Then the model accuracy and F1-
score were both 59.3%. Therefore, a subset of important
features was able to generate better model performance.

Discussion and conclusion
This study develops a method to predict drivers’ takeover
performance using their physiological data and environment
parameters via random forest algorithm. The best predic-
tive model can differentiate drivers’ takeover performance
when they are engaged in the same type of NDRTs but with

different levels of cognitive load with an accuracy of 70.2%
and F1-score of 70.1%.

Future study can try a convolutional neural network (CNN)
combined with long-short-term memory (LSTM) to predict
drivers’ takeover performance since the physiological data
is time-series. Moreover, objective driving behaviors can
be explored to refine the ground truth in addition to sub-
jective ratings. Instead of using dichotomous classification
of takeover performance, we can increase the number of
classes (e.g. bad, neutral, good; Or very bad, bad, neutral,
good, very good) to see model prediction power.

The findings of the study can contribute to the design of an
adaptive in-vehicle alert system. For example, if the system
predicts that a driver is going to have bad takeover per-
formance, a multi-modal display can be issued to help the
driver realize the urgency of the event, increase situational
awareness and allocate attention properly, resulting in bet-
ter takeover performance. Eventually, it will enhance the
safety and adoption of automated vehicles.
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