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Abstract 
In this work, we proposed a personalized trust predictor for 
modeling trust dynamics in human-robot teaming. The pro-
posed method models trust by a Beta distribution to cap-
ture the three properties of trust dynamics, which takes 
the performance-induced positive attitude and negative 
attitude as parameters. The model learns the prior distri-
bution of the parameters from a training dataset, and esti-
mates the posterior distribution based on a short training 
session and occasionally reported trust feedback. The ex-
periments showed that the proposed method accurately 
predicted people’s trust dynamics, achieving a root mean 
square (RMS) of 0.0724 out of 1. 

Author Keywords 
Trust in automation; Trust in autonomy; Human-automation 
interaction; Human-robot interaction; Human-robot teaming 

CCS Concepts 
•Human-centered computing → HCI theory, concepts 
and models; 

Introduction 
Advances in robotics enable robots to assist humans in a 
variety of fields, including transportation, healthcare, and 
manufacturing. The human-robot team’s success relies on 
the ability of both the human and the robotic agents to col-
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Problem statement 

Goal: 
Predict the human agent’s 
moment-to-moment trust 
based on his or her interac-
tion history with the robot 
and occasionally reported 
trust feedback. 

Input: 
Robot’s performance history, 
human agent’s reported trust 
feedback during the training 
session and occasionally 
reported trust feedback. 

Output: 
Moment-to-moment trust. 

laborate with each other. Just like human-human teaming, Problem statement 
to ensure effective human-robot teaming, appropriate trust This work is aimed to build a personalized trust predictor for 
has to be established between the human and the robot [1, estimating a human agent’s moment-to-moment trust during 
3, 4, 7]. human-robot interaction. The predictor is able to estimate 

the human agent’s moment-to-moment trust only based 
Despite the research efforts on trust in automation/autonomy on some occasionally trust feedback after a short training 
over the past three decades, one major research gap re- session. 
mains: The majority of prior literature adopted a “snapshot” 
view of trust and typically measured trust once through Let’s consider an example where an assistant robot is de-
questionnaires at the end of an experiment. More than two signed to work with human operators to perform a series 
dozen factors have been identified to influence one’s (snap- of tasks. We denote the robot’s performance on the ith 

shot) trust in autonomy, including individual factors such as task as pi ∈ {0, 1}, where pi = 1 indicates a success 
culture and age [9, 12, 2], system factors such as reliability while pi = 0 indicates a failure. The reliability of the robot, 
and level of automation [10, 11, 14, 15], and environmental r ∈ [0, 1], is defined as the probability that the robot can 
factors such as multi-tasking requirement [18]. This "snap- succeed the task. Here we assume the robot has the same 
shot" view, however, does not acknowledge that trust is a reliability while working with one operator, but its reliabil-
time-variant variable that can strengthen and decay over ity may vary between operators. At time i, after observing 
time. With few exceptions (e.g. [6, 13, 17, 16]), we have the robot’s performance pi, the operator will update his/her 
little understanding of the temporal dynamics of trust forma- trust ti ∈ [0, 1] in the robot according to the performance 
tion and evolution, nor of how trust strengthens or decays history {p1, p2, ..., pi}, where ti = 1 means the operator 
over time as a result of moment-to-moment interactions in completely trusts the robot and ti = 0 means the operator 
human-agent teams. does not trust the robot at all. 

In the present study, we proposed a Bayesian personal- Suppose the robot has previously been trained with k hu-
ized trust predictor to model trust dynamics in human-robot man operators and completed n tasks with each operator. 
teaming. The proposed method models trust as a modi- Each operator provided his/her trust feedback ti at the end 
fied Beta distribution to capture the three properties of trust jof each task i. Therefore, the trust history T j = {t1, ..., tj }n
dynamics, which takes the performance-induced positive j jand the robot’s performance history P j = {p1, ..., p } aren
attitude and negative attitude as parameters. The model fully available, j = 1, 2, ..., k. Now a new operator will work 
learns the prior distribution of the parameters from a train- with the robot for the first time: the operator will be trained 
ing dataset, and estimates the posterior distribution based working with the robot for the first l tasks and during this 
on a short training session and occasionally reported trust training s/he will report his/her trust after each task; after 
feedback. Using an existing dataset collected by by Yang et this training session, the operator will continue working with 
al. in [16], we showed that the proposed method accurately the robot, but s/he can choose to or not to provide his/her 
predicted human operators’ trust in a robotic agent. trust feedback after each task. 
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Proposed model 

We proposed to model trust 
dynamics using the Beta dis-
tribution. We showed that the 
proposed model can reflect 
the three properties of trust 
dynamics. 

The objective is defined as the following: after the new 
operator finishes the mth task, given the robot’s perfor-
mance history Pm = {pi|i = 1, 2, 3, ..., m}, trust his-
tory of the training session T t = {ti|i = 1, 2, 3, ..., l},m 
occasionally reported trust T o = {ti|i ∈ Om, Om ⊂m 
{l + 1, l + 2, ..., m − 1}}, and the data from the k opera-
tors T j and P j , j = 1, 2, ..., k, predict the current trust tm. 
Here Om is an indicator set: Om = Om−1 ∪ {m − 1} if the 
user choose to report his/her trust after the m − 1th task, 
otherwise Om = Om−1. We define trust history at time m 
as Tm = T o ∪ T t .m m 

Personalized trust prediction model 
Based on the related studies, a desired trust model should 
have the following three properties: 

1. Trust at the present moment is determined by trust at 
the previous moment [5]; 

2. Negative experience had more influence on trust than 
positive experience and a single automation failure 
led to immediately decrease of trust [8]; 

3. Human operators’ trust in automation would stabilize 
over repeated interaction with an automated technol-
ogy [16]. 

To reflect these properties, we proposed to use Bayesian 
inference with the Beta distribution to predict human trust. 
We propose that after the robot completing the ith task, the 
operator’s temporary trust ti follows a Beta distribution: 

ti ∼ Beta(αi, βi) (1) 

The predicted trust t̄  i is given by the mean of the distribu-
tion 

t̄  i = E(ti) = 
αi (2)

αi + βi 

αi and βi are updated by ( 
sαi−1 + w , if pi = 1 

αi = 
αi−1 , if pi = 0 

(3)( 
fβi−1 + w , if pi = 0 

βi = 
βi−1 , if pi = 1 

again pi is the performance of the robot on the ith task. 
Here αi and βi correspond to the operator’s positive and 
negative experience with the robot, which can be viewed as 
the negative and positive attitude the operator gained from 
the interaction experience respectively. ws and wf are the 
gains of the positive attitude and negative attitude at each 
task respectively, where the superscript s stands for suc-
cess and f stands for failure. 

Next we show that the model features the three proper-
ties of trust dynamics. First, it is clear in Eq. (3) that the 
present trust is determined by the previous trust, so the first 
property is satisfied. Second, we calculate the difference 
between the increase of trust cause by automation suc-
cess and decrease of trust caused by automation failure at 
time i: 

(ti|pi=1 − ti−1) − (ti−1 − ti|pi=0)� � 
1 wsβi−1 wf αi−1 (4) 

= − 
D D + ws D + wf 

where D = αi−1 + βi−1. If αi−1 and βi−1 are close, then 
Eq. (4) indicates that an automation failure will lead to a 
larger trust change compared to an automation success 

f s w D+w wwhen w > w . More precisely, when α > 
s s f

f ,β wf D+wsw 
the automation failures will have a larger impact. So the 
second property will be satisfied in most cases when the 

fvalue of ws and w are appropriately chosen. Finally, for 
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Model inference 

The posterior is estimated via 
MAE, and the prior is learned 
via MLE from the data of the 
other k operators. 

Figure 1: Dual-task environment in 
the simulation testbed. The two 
images show displays from the 
simulation testbed for the tracking 
(top) and detection (bottom) tasks 
respectively. Participants could 
access only one of the two displays 
at a time, and could switch 
between them. 

the stabilization property, let’s suppose the robot has a con-
sstant reliability r. After n tasks, the robot accomplishes n 

tasks and fails nf tasks. Then 

s ftn ∼ Beta(α0 + n w s, β0 + n w f ) (5) 

When n → ∞, tn will be a point mass distribution centered 
at 

s s sα0 + n w rw 
= (6)

α0 + β0 + nf wf + nsws rws + (1 − r)wf 

which means trust stabilizes with repeated tasks. There-
fore, all the three properties of trust dynamics are satisfied 
in the proposed model. 

Now we discuss how to infer the model parameters. Given 
robot performance history {p1, p2, ..., pn}, trust {t1, t2, ..., tn}
can be totally determined by the parameter set � 

s fθ = α0, β0, w , w (7) 

So to personalize the trust model for a certain operator is to 
find the best θ for him. Here we use maximum a posterior 
estimation (MAP) to estimate θ, which is to maximize the 
posterior of θ given the robot performance Pm, trust history 
Tm and robot reliability r. Because Y 

P (θ | Pm, Tm, r) ∝ Beta(ti; αi, βi) · P (θ) (8) 
ti∈Tm 

we have X 
θ = argmax log(Beta(ti; αi, βi)) + log P (θ) (9) 

θ ti∈Tm 

The above equation shows that θ will be updated only when 
the operator produces a new trust feedback. The prior P (θ) 

can be learned by maximum likelihood estimation (MLE) 
from the data of other operators, namely T j and P j , j = 
1, 2, ..., k 

kY 
θ = argmax P (T j , P j | θ) 

θ j=1 
(10)

k nYY 
j j j= argmax Beta(ti ; α , β )i i 

θ j=1 i=1 

Experiments 
In the experiment, we tested our trust model on a dataset 
where the participants were asked to report their trust to-
wards an automated threat detector. We analyzed the train-
ing and prediction results. 

Dataset 
In this work, we utilized the dataset collected by Yang et 
al. [16]. Participants in the experiment performed a simu-
lated surveillance task consisting of a tracking task and a 
detection task (Fig. 1). For the tracking task, participants 
controlled a joystick and moved the green circle to the cen-
ter of the display as close as possible. Meanwhile, partic-
ipants were asked to detect whether there was a potential 
threat in four images. Participants were able to access only 
one task at any time and had to switch between the track-
ing task and the detection task. There was an imperfect 
threat detector to assist human operators in detecting the 
threat. While two kinds of detectors were introduced in [16], 
we only consider the cases where a binary detector was 
used. The system reliability of the threat detector was set 
as 70%, 80%, and 90%. Each participant had 100 trials 
with each trial lasting 10 seconds. After each trial, partic-
ipants reported their perceived automation reliability, trust 
in automation, and confidence. Here we only use the infor-
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Figure 3: Learned distribution of 
s w , w f , α0, and β0. 

mation of the operator’s trust feedback and the detector’s 
performance according to the problem statement. 

Experiments 
There were 39 participants in total who worked with a bi-
nary detector. Due to this limited number of data points, we 
used the leave-one-out method to evaluate the proposed 
model: in each run, one participant’s data was picked out 
as the testing data while the other 38 participants’ data 
were used as the training data. During the training, a hu-
man agent’s trust history and the detector’s performance 

thhistory were fully available. During testing, after the m 
trial, where m > l, input to the predictor included the trust 
history of the training session T t = {ti|i = 1, 2, 3, ..., l}m 
and the human agent’s occasionally reported trust feedback 
T o = {ti|i = l + q, l + 2q, l + 3q, ..., i < m}. Herem 
we assume the operator reported his/her trust in every q 
trials after the l personalized training trials. In this section 
we set l = 10 and q = 10. How different l and q affect the 
prediction will be discussed later. 
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Figure 2: Trust prediction for the first operator. The first 10 trust 
feedback are given, and further trust feedback is given every other 
10 trials. The gray zone indicates a failure, while the white zone 
means success. The cyan curve is the predicted trust. 

Training 
The distributions of α0, β0, ws, wf learned in the training 
are shown in Fig. 3. It is clear that α has a larger mean 
than β, which indicates that the participants in the exper-
iment generally have a more positive attitude towards the 
detector. Also, wf ’s mean is larger than ws’s mean, so in 
the experiment a detection failure would change trust more 
compared to a detection success. 

Prediction 
We evaluated the root mean square error (RMS) of the pro-
posed method. the RMS of the proposed method is 0.0724. 
Fig. 2 illustrates the prediction result for the first operator. 
It shows that the predicted trust successfully captures the 
operator’s trust dynamics. 

Discussion 
In this section, we discuss the three types of trust dynam-
ics and how trust report frequency affected the prediction 
results. 

Three types of trust dynamics 
In the experiments, we found that the operators’ trust dy-
namics can be categorized into three types: the rational 
agent whose trust dynamics can be modelled accurately 
by Bayesian inference (Fig. 4a), the oscillator whose trust 
changes abruptly (Fig. 4b), and the disbeliever whose trust 
is constantly low no matter how capable an autonomous 
agent is (Fig. 4c). 

Above are the three typical types of trust behavior observed 
in the dataset, but there is no hard boundary between them. 
For example, fluctuation can be found in many participants, 
while their overall trust feedback are reasonable. 
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(a) Rational decision maker (b) Oscillator (c) Disbeliever 

Figure 4: Three different types of trust behaviors 

properties of trust dynamics from related literature, we pro-
posed to model trust by a Beta distribution. We evaluated 

Trust report frequency the model using an existing dataset and showed the pro-
We examined how the trust report frequency affected the posed model achieved a RMS of 0.0724. Moreover, as the 
prediction results. One human participant’s data is used model only had four parameters, it can be inferred fast and 
as an illustration. In Fig. 5, the prediction results were pro- thus used for real-time tasks. 
duced by setting l = 10 and q = 2, 5, 10, 25 respectively. 
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